×

Space-time adaptation for purely diffusive problems in an anisotropic framework. (English) Zbl 1499.65515

Summary: The main goal of this work is the proposal of an efficient space-time adaptive procedure for a cGdG approximation of an unsteady diffusion problem. We derive a suitable a posteriori error estimator where the contribution of the spatial and of the temporal discretization is kept distinct. In particular our interest is addressed to phenomena characterized by temporal multiscale as well as strong spatial directionalities. On the one hand we devise a sound criterion to update the time step, able to follow the evolution of the problem under investigation. On the other hand we exploit an anisotropic triangular adapted grid. The reliability and the efficiency of the proposed error estimator are assessed numerically.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Software:

ALBERT; bamg

References:

[1] G. Akrivis, C. Makridakis and R. Nochetto. A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comp., 75:511-531, 2006. · Zbl 1101.65094
[2] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications. Advances in Nu-merical Mathematics, Teubner, Stuttgart, 1999. · Zbl 0934.65121
[3] A.K. Aziz and P. Monk. Continuous finite elements in space and time for the heat equation. Math. Comp., 52:255-274, 1989. · Zbl 0673.65070
[4] W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differential Equations. Birkhauser Verlag, Basel, 2003. · Zbl 1020.65058
[5] R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer., 10:1-102, 2001. · Zbl 1105.65349
[6] J.C. Bruch. Free surface seepage problems solved using: a) the Zienkiewicz-Zhu error esti-mation procedure; and b) a parallel computer. Pitman Res. Notes Math. Ser., 282:98-104, 1993. · Zbl 0800.76255
[7] W. Cao. On the error of linear interpolation and the orientation, aspect ratio and internal angles of a triangle. SIAM J. Numer. Anal., 43(1):19-40, 2005. · Zbl 1092.65006
[8] W. Cao. An interpolation error estimate in R 2 based on the anisotropic measures of higher order derivatives. Math. Comp., 77(261):265-286, 2007. · Zbl 1149.65010
[9] J.M. Cascón, L. Ferragut and M.I. Asensio. Space-time adaptive algorithm for the mixed parabolic problem. Numer. Math., 103:367-392, 2006. · Zbl 1118.65098
[10] M.J. Castro-Díaz, F. Hecht, B. Mohammadi and O. Pironneau. Anisotropic unstructured mesh adaption for flow simulations. Internat. J. Numer. Methods Fluids, 25(4):475-491, 1997. · Zbl 0902.76057
[11] Z. Chen and J. Feng. An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp., 73(247):1167-1193, 2004. · Zbl 1052.65091
[12] Ph. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. · Zbl 0383.65058
[13] Ph. Clément. Approximation by finite element functions using local regularization. RAIRO Anal. Numér., 2:77-84, 1975. · Zbl 0368.65008
[14] B. Cockburn and C.-W. Shu. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput., 16(3):173-261, 2001. · Zbl 1065.76135
[15] D.L. Darmofal and D.A. Venditti. Grid adaption for functional outputs: application to two-dimensional inviscid fluids. J. Comput. Phys., 176(1):40-69, 2002. · Zbl 1120.76342
[16] R. Dautray and J. -L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology: Evolution Problems I. Vol. 5, Springer-Verlag, Berlin, 1992. · Zbl 0755.35001
[17] L. Dedè, S. Micheletti and S. Perotto. Anisotropic error control for environmental applica-tions. Appl. Numer. Math., 58:1320-1339, 2008. · Zbl 1160.65057
[18] J. Dompierre, M.-G. Vallet, Y. Bourgault, M. Fortin and W.G. Habashi. Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part III. Unstructured meshes. Internat. J. Numer. Methods Fluids, 39:675-702, 2002. · Zbl 1101.76356
[19] K. Eriksson, D. Estep, P. Hansbo and C. Johnson. Computational Differential Equations. Cambridge University Press, Cambridge, 1996. · Zbl 0946.65049
[20] K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems. I: a linear model problem. SIAM J. Numer. Anal., 28:43-77, 1991. · Zbl 0732.65093
[21] K. Eriksson, C. Johnson and V. Thomée. Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Modelisation Math. Anal. Numer., 19:611-643, 1985. · Zbl 0589.65070
[22] L. Formaggia and S. Perotto. New anisotropic a priori error estimates. Numer. Math., 89:641-667, 2001. · Zbl 0990.65125
[23] L. Formaggia and S. Perotto. Anisotropic error estimates for elliptic problems. Numer. Math., 94:67-92, 2003. · Zbl 1031.65123
[24] E.H. Georgoulis, E. Hall and P. Houston. Discontinuous Galerkin methods for advection-diffusion-reaction problems on anisotropically refined meshes. SIAM J. Sci. Comput., 30(1):246-271, 2007. · Zbl 1159.65092
[25] R. Hartmann and P. Houston. Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput., 24(3):979-1004, 2002. · Zbl 1034.65081
[26] F. Hecht. BAMG: bidimensional anisotropic mesh generator. http://www.ann.jussieu.fr/∼hecht/ftp/bamg, 2006.
[27] P. Houston and E. Süli. Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems. Math. Comp., 70(233):77-106, 2001. · Zbl 0957.65085
[28] T.J.R. Hughes. The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Dover Publications Inc., Mineola, New-York, 2000. · Zbl 1191.74002
[29] P. Jamet. Galerkin-type approximations which are discontinuous in time for parabolic equa-tions in a variable domain. SIAM J. Numer. Anal., 15:912-928, 1978. · Zbl 0434.65091
[30] D. Kröner and M. Ohlberger. A posteriori error estimate for upwind finite volume schemes for nonlinear conservation laws in multidimensions. Math. Comp., 69(229):25-39, 2000. · Zbl 0934.65102
[31] K.L. Lawrence and R.V. Nambiar. The Zienkiewicz-Zhu error estimator for multiple material problems. Commun. Appl. Numer. Methods, 8:273-277, 1992. · Zbl 0772.73080
[32] G. Maisano, S. Micheletti, S. Perotto and C.L. Bottasso. On some new recovery based a posteriori error estimators. Comput. Methods Appl. Mech. Engrg., 195(37-40):4794-4815, 2006. · Zbl 1168.65406
[33] D. Meidner and B. Vexler. Adaptive space-time finite element methods for parabolic opti-mization problems. SIAM J. Control Optim., 46(1):116-142, 2007. · Zbl 1149.65051
[34] S. Micheletti and S. Perotto. Reliability and efficiency of an anisotropic Zienkiewicz-Zhu error estimator. Comput. Methods Appl. Mech. Engrg., 195(9-12):799-835, 2006. · Zbl 1125.65099
[35] S. Micheletti and S. Perotto. Anisotropic mesh adaption for time-dependent problems. Int. J. Numer. Meth. Fluids, 58:1009-1015, 2008. · Zbl 1153.65096
[36] S. Micheletti and S. Perotto. Space-Time Adaption for Advection-Diffusion-Reaction Prob-lems on Anisotropic Meshes. In Numerical Mathematics and Advanced Applications (Eds. K. Kunisch, G. Of, O. Steinbach), p. 49-56, Springer-Verlag, 2008. · Zbl 1157.65451
[37] S. Micheletti, S. Perotto and M. Picasso. Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection-diffusion and the Stokes problems. SIAM J. Numer. Anal., 41(3):1131-1162, 2003. · Zbl 1053.65089
[38] R. Nochetto, A. Schmidt and C. Verdi. A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp., 69:1-24, 2000. · Zbl 0942.65111
[39] T.P. Pawlak, M.J. Wheeler and S.M. Yunus. Application of the Zienkiewicz-Zhu error esti-mator for plate and shell analysis. Int. J. Numer. Methods Eng., 29:1281-1298, 1990. · Zbl 0713.73087
[40] M. Picasso. Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg., 167:223-237, 1998. · Zbl 0935.65105
[41] M. Picasso. Anisotropic a posteriori error estimate for an optimal control problem governed by the heat equation. Numer. Methods Partial Differential Equations, 22(6):1314-1336, 2006. · Zbl 1111.65060
[42] J.E. Reed. Type Curves for Selected Problems of Flow to Wells in Confined Aquifers. U.S. Geological Survey, Techniques of Water-Resources Investigations, Book 3, Chapter B3. http://pubs.usgs.gov/twri/twri3-b3/
[43] R. Rodriguez. Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differ-ential Equations, 10(5):625-635, 1994. · Zbl 0806.73069
[44] M. Schmich and B. Vexler. Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations. SIAM J. Control Optim., 30(1):369-393, 2008. · Zbl 1169.65098
[45] A. Schmidt and K.G. Siebert. ALBERT: an adaptive hierarchical finite element toolbox. IAM, University of Freiburg, 2000. http://www.mathematik.uni-freiburg.de/IAM/Research/projectsdz/albert
[46] L.R. Scott and S. Zhang. Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp., 54:483-493, 1990. · Zbl 0696.65007
[47] K.G. Siebert. An a posteriori error estimator for anisotropic refinement. Numer. Math., 73:373-398, 1996. · Zbl 0873.65098
[48] J.J. Sudirham, J.J.W. van der Vegt and R.M.J. van Damme. Space-time discontinuous Galerkin method for advection-diffusion problems on time-dependent domains. Appl. Nu-mer. Math., 56: 1491-1518, 2006. · Zbl 1111.65089
[49] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics vol. 25., 2nd edn, Springer-Verlag, Berlin, 2006. · Zbl 1105.65102
[50] R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, New York, 1996. · Zbl 0853.65108
[51] R. Verfürth. A posteriori error estimate for finite element discretizations of the heat equation. Calcolo, 40:195-212, 2003. · Zbl 1168.65418
[52] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Engrg., 24(2):337-357, 1987. · Zbl 0602.73063
[53] O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery and a posteriori error estimates. Part I: the recovery technique. Int. J. Numer. Methods Engrg., 33(7):1331-1364, 1992. · Zbl 0769.73084
[54] O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int. J. Numer. Methods Engrg., 33(7):1365-1382, 1992. · Zbl 0769.73085
[55] MOX-Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, Via Bonardi 9, I-20133 Milano, Italy E-mail: stefano.micheletti@polimi.it and simona.perotto@polimi.it URL: http://www1.mate.polimi.it/∼mike/ and http://www1.mate.polimi.it/∼simona/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.