×

3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. (English) Zbl 1102.65122

The authors describe a mesh generator for constructing unstructured tetrahedral triangulations. The generation algorithm makes use of local optimization operations. Special 3D metric fields are introduced to construct anisotropic triangulations and triangulations of domains consisting of several subdomains. In the case of meshing thin and curved geometries a metric field that detects the local anisotropy of the geometry is generated automatically. In the case of several subdomains the most mesh generators produce for each subdomain a mesh separately. In contrast to this approach the presented mesh generator produces a single mesh which captures the interface between the subdomains. The mesh generation is based on a multidomain metric field which is generated by using a presence function for each subdomain. Some applications of the presented mesh generation algorithm are shown.

MSC:

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
Full Text: DOI

References:

[1] S. Batkam, T. Coupez, A new multi-domain approach for the thermal problem solution in 3D mold filling, in: ESAFORM Conference on Material Forming, Liege, 2001, pp. 31-34.; S. Batkam, T. Coupez, A new multi-domain approach for the thermal problem solution in 3D mold filling, in: ESAFORM Conference on Material Forming, Liege, 2001, pp. 31-34.
[2] Bruchon, J.; Coupez, T., A study of the 3D polymer foam formation based on the simulation of anisothermal bubble expansion, Mecanique Indust., 4, 331-338 (2003)
[3] J. Barboza, L. Fourment, J.-L. Chenot, Contact algorithm for 3D multi-bodies problems: Application to forming of multi-material parts and tool deflection, in: 5th World Congress on Computational Mechanics, Vienna, 2002.; J. Barboza, L. Fourment, J.-L. Chenot, Contact algorithm for 3D multi-bodies problems: Application to forming of multi-material parts and tool deflection, in: 5th World Congress on Computational Mechanics, Vienna, 2002.
[4] Bouchard, P. O.; Bay, F.; Chastel, Y.; Tovena, I., Crack propagation modelling using an advanced remeshing technique, Comput. Meth. Appl. Mech. Engrg., 189, 723-742 (2000) · Zbl 0993.74060
[5] C. Gruau, T. Coupez, Anisotropic and multidomain mesh automatic generation for viscous flow finite element method, in: N.-E. Wiberg, P. Dìez, Adaptive Modelling and Simulation, Göteborg, 2003. ISBN: 84-95999-30-7.; C. Gruau, T. Coupez, Anisotropic and multidomain mesh automatic generation for viscous flow finite element method, in: N.-E. Wiberg, P. Dìez, Adaptive Modelling and Simulation, Göteborg, 2003. ISBN: 84-95999-30-7.
[6] M. Bellet, C. Aliaga, O. Jaouen, Finite elements for a thermomechanical of analysis of solidification processes, in: 9th International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Aachen, 2000, pp. 10-17.; M. Bellet, C. Aliaga, O. Jaouen, Finite elements for a thermomechanical of analysis of solidification processes, in: 9th International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Aachen, 2000, pp. 10-17.
[7] P.J. Frey, P.-L. George, Mesh generation—Application to finite elements, Hermes, 2000.; P.J. Frey, P.-L. George, Mesh generation—Application to finite elements, Hermes, 2000.
[8] Dompierre, J.; Vallet, M.-G.; Bourgault, Y.; Fortin, M.; Habashi, W. G., Anisotropic mesh adaptation: Towards user-independent, mesh-independent and solver-Independent CFD. Part III: Unstructured meshes, Int. J. Numer. Meth. Fluids, 39, 675-702 (2002) · Zbl 1101.76356
[9] Peraire, J.; Morgan, K., Unstructured mesh generation including directional refinement for aerodynamic flow simulation, Finite Elements Anal. Des., 25, 343-355 (1997) · Zbl 0914.76069
[10] Löhner, R.; Yang, C.; Oñate, E.; Idelssohn, S., An unstructured grid-based, parallel free surface solver, Appl. Numer. Math., 31, 271-293 (1999) · Zbl 0951.76040
[11] F. Alauzet, P.J. Frey, B. Mohammadi, Anisotropic mesh adaptation. Application to transient CFD problem, in: Second MIT Conference on Computational Fluid and Solid Mechanics, Boston, 2003, pp. 1851-1854.; F. Alauzet, P.J. Frey, B. Mohammadi, Anisotropic mesh adaptation. Application to transient CFD problem, in: Second MIT Conference on Computational Fluid and Solid Mechanics, Boston, 2003, pp. 1851-1854.
[12] Castro-Díaz, M. J.; Hecht, F.; Mohammadi, B.; Pironneau, O., Anisotropic unstructured mesh adaptation for flow simulations, Int. J. Numer. Meth. Fluids, 25, 475-491 (1997) · Zbl 0902.76057
[13] T. Coupez, Grandes transformations et remaillage automatique, PhD Thesis, France, 1991, pp. 123-210.; T. Coupez, Grandes transformations et remaillage automatique, PhD Thesis, France, 1991, pp. 123-210.
[14] Zavattieri, P. D.; Dari, E. A.; Buscaglia, G. C., Optimization strategies in unstructured mesh generation, Int. J. Numer. Meth. Eng., 39, 2055-2071 (1996) · Zbl 0881.76079
[15] doCarmo, M. P., Riemannian Geometry (1988), Birkhäuser
[16] Jost, J., Riemannian Geometry and Geometric Analysis (1998), Springer-Verlag · Zbl 0997.53500
[17] P.M. Morse, H. Feshbach, Stokes theorem, in: Methods of Theoretical Physics, Part I, New York, 1953, p. 43.; P.M. Morse, H. Feshbach, Stokes theorem, in: Methods of Theoretical Physics, Part I, New York, 1953, p. 43. · Zbl 0051.40603
[18] Coupez, T., Generation de maillage et adaptation de maillage par optimisation locale, Revue europeenne des elements finis, 9, 403-423 (2000) · Zbl 0953.65089
[19] J. Dompierre, M.-G. Vallet, P. Labbé, F. Guibault, On simplex shape measures with extension for anisotropic meshes, in: Workshop on Mesh Quality and Dynamic Meshing, Livermore, 2003, pp. 46-71.; J. Dompierre, M.-G. Vallet, P. Labbé, F. Guibault, On simplex shape measures with extension for anisotropic meshes, in: Workshop on Mesh Quality and Dynamic Meshing, Livermore, 2003, pp. 46-71.
[20] C. Bottasso, On the choice of the optimization strategy and of the objective function for metric-driven mesh adaptation, in: International Conference on Adaptative Modelling and Simulation, Göteborg, 2003.; C. Bottasso, On the choice of the optimization strategy and of the objective function for metric-driven mesh adaptation, in: International Conference on Adaptative Modelling and Simulation, Göteborg, 2003.
[21] Pain, C. C.; Umpleby, A. P.; de Oliveira, C. R.E.; Goddard, A. J.H., Tetrahedral mesh optimisation and adaptativity for steady-state and transient finite element calculations, Comput. Methods Appl. Mech. Engrg., 190, 3771-3796 (2001) · Zbl 1008.76041
[22] P.-L. George, H. Borouchaki, Delaunay triangulation and meshing. Application to finite elements, Hermes, 1998.; P.-L. George, H. Borouchaki, Delaunay triangulation and meshing. Application to finite elements, Hermes, 1998. · Zbl 0908.65143
[23] Coupez, T.; Digonnet, H.; Ducloux, R., Parallel meshing and remeshing, Appl. Math. Modell., 25, 153-175 (2000) · Zbl 1076.74551
[24] Advani, S. G.; Tucker, C. L., The use of tensors to describe and predict fiber orientation in short fiber composites, J. Rheol., 31, 751-784 (1987)
[25] T. Coupez, E. Bigot, 3D anisotropic mesh generation and adaptation with applications, in: European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, 2000.; T. Coupez, E. Bigot, 3D anisotropic mesh generation and adaptation with applications, in: European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, 2000.
[26] K.-F. Tchon, M. Khachan, F. Guibault, R. Camarero, Constructing anisotropic geometric metrics using octrees and skeletons, in: 12th International Meshing Roundtable, Santa Fe, 2003, pp. 293-304.; K.-F. Tchon, M. Khachan, F. Guibault, R. Camarero, Constructing anisotropic geometric metrics using octrees and skeletons, in: 12th International Meshing Roundtable, Santa Fe, 2003, pp. 293-304.
[27] R.V. Garimella, M.S. Shephard, Boundary layer meshing for viscous flows in complex domains, in: 7th International Meshing Roundtable, Dearborn, 1998, pp. 107-118.; R.V. Garimella, M.S. Shephard, Boundary layer meshing for viscous flows in complex domains, in: 7th International Meshing Roundtable, Dearborn, 1998, pp. 107-118.
[28] R.V. Garimella, Anisotropic tetrahedral mesh generation, PhD thesis, Rensselaer Polytechnic Institute, 1998.; R.V. Garimella, Anisotropic tetrahedral mesh generation, PhD thesis, Rensselaer Polytechnic Institute, 1998.
[29] Chakravarthy, S., A unified-grid finite volume formulation for computational fluid dynamics, Int. J. Numer. Meth. Fluids, 31, 309-323 (1999) · Zbl 0986.76050
[30] Tezduyar, T.; Osawa, Y., The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft, Comput. Methods Appl. Mech. Engrg., 191, 705-716 (2001) · Zbl 1113.76406
[31] Lesoinne, M.; Farhat, C., Geometric conservation law for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations, Comput. Methods Appl. Mech. Engrg., 134, 71-90 (1996) · Zbl 0896.76044
[32] Stalický, T.; Roos, H.-G., Anisotropic mesh refinement for problems with internal and boundary layers, Int. J. Numer. Meth. Engrg., 46, 1933-1953 (1999) · Zbl 0965.76047
[33] Tezduyar, T.; Aliabadi, S.; Behr, M., Enhanced-discretisation interface-capturing technique (EDICT) for computation of unsteady flows with interfaces, Comput. Methods Appl. Mech. Engrg., 155, 235-248 (1998) · Zbl 0961.76046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.