×

An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. (English) Zbl 1052.65091

The authors present an adaptive finite-element algorithm for parabolic equations. The algorithm for mesh refinement or coarsening is based on an a priori error estimate derived from the norm of the discontinuities in the flux and from the temporal variability of the source.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35K15 Initial value problems for second-order parabolic equations
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Software:

ALBERT
Full Text: DOI

References:

[1] Eberhard Bänsch, Local mesh refinement in 2 and 3 dimensions, Impact Comput. Sci. Engrg. 3 (1991), no. 3, 181 – 191. · Zbl 0744.65074 · doi:10.1016/0899-8248(91)90006-G
[2] M. Bieterman and I. Babu��ka, The finite element method for parabolic equations. I. A posteriori error estimation, Numer. Math. 40 (1982), no. 3, 339 – 371. , https://doi.org/10.1007/BF01396451 M. Bieterman and I. Babuška, The finite element method for parabolic equations. II. A posteriori error estimation and adaptive approach, Numer. Math. 40 (1982), no. 3, 373 – 406. · Zbl 0534.65073 · doi:10.1007/BF01396452
[3] M. Bieterman and I. Babuška, The finite element method for parabolic equations. I. A posteriori error estimation, Numer. Math. 40 (1982), no. 3, 339 – 371. , https://doi.org/10.1007/BF01396451 M. Bieterman and I. Babuška, The finite element method for parabolic equations. II. A posteriori error estimation and adaptive approach, Numer. Math. 40 (1982), no. 3, 373 – 406. · Zbl 0534.65073 · doi:10.1007/BF01396452
[4] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736 – 754. · Zbl 0398.65069 · doi:10.1137/0715049
[5] Zhiming Chen and Shibin Dai, Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity, SIAM J. Numer. Anal. 38 (2001), no. 6, 1961 – 1985. · Zbl 0987.65096 · doi:10.1137/S0036142998349102
[6] Z. Chen and S. Dai, On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients, SIAM J. Sci. Comput. 24 (2002), 443-462. · Zbl 1032.65119
[7] Zhiming Chen, Ricardo H. Nochetto, and Alfred Schmidt, A characteristic Galerkin method with adaptive error control for the continuous casting problem, Comput. Methods Appl. Mech. Engrg. 189 (2000), no. 1, 249 – 276. · Zbl 0960.76045 · doi:10.1016/S0045-7825(99)00295-9
[8] Zhiming Chen, Ricardo H. Nochetto, and Alfred Schmidt, Error control and adaptivity for a phase relaxation model, M2AN Math. Model. Numer. Anal. 34 (2000), no. 4, 775 – 797. · Zbl 0965.65114 · doi:10.1051/m2an:2000103
[9] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[10] Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique 9 (1975), no. R-2, 77 – 84 (English, with Loose French summary). · Zbl 0368.65008
[11] Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106 – 1124. · Zbl 0854.65090 · doi:10.1137/0733054
[12] Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal. 28 (1991), no. 1, 43 – 77. · Zbl 0732.65093 · doi:10.1137/0728003
[13] Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems, SIAM J. Numer. Anal. 32 (1995), no. 6, 1729 – 1749. · Zbl 0835.65116 · doi:10.1137/0732078
[14] Peter K. Moore, A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension, SIAM J. Numer. Anal. 31 (1994), no. 1, 149 – 169. · Zbl 0798.65089 · doi:10.1137/0731008
[15] Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466 – 488. · Zbl 0970.65113 · doi:10.1137/S0036142999360044
[16] R. H. Nochetto, A. Schmidt, and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems, Math. Comp. 69 (2000), no. 229, 1 – 24. · Zbl 0942.65111
[17] Marco Picasso, Adaptive finite elements for a linear parabolic problem, Comput. Methods Appl. Mech. Engrg. 167 (1998), no. 3-4, 223 – 237. · Zbl 0935.65105 · doi:10.1016/S0045-7825(98)00121-2
[18] A. Schmidt and K.G. Siebert, ALBERT: An adaptive hierarchical finite element toolbox, IAM, University of Freiburg, 2000. http://www.mathematik.uni-freiburg.de/IAM/ Research/projectsdz/albert.
[19] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Teubner (1996). · Zbl 0853.65108
[20] R. Verfürth, A posteriori error estimates for nonlinear problems: \?^{\?}(0,\?;\?^{1,\?}(\Omega ))-error estimates for finite element discretizations of parabolic equations, Numer. Methods Partial Differential Equations 14 (1998), no. 4, 487 – 518. , https://doi.org/10.1002/(SICI)1098-2426(199807)14:43.0.CO;2-G · Zbl 0974.65087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.