×

Comparison of some finite element methods for solving the diffusion-convection-reaction equation. (English) Zbl 0959.76040

Summary: We describe several finite element methods for solving the diffusion-convection-reaction equation. None of them is new, although the presentation is non-standard in an effort to emphasize the similarities and difference between them. In particular, it is shown that the classical SUPG method is very similar to an explicit version of the characteristic-Galerkin method, whereas the Taylor-Galerkin method has a stabilization effect similar to a sub-grid scale model, which is in turn related to the introduction of bubble functions.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76R99 Diffusion and convection
76V05 Reaction effects in flows
Full Text: DOI

References:

[1] Brooks, A. N.; Hughes, T. J.R., Streamline Upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[2] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 173-189 (1989) · Zbl 0697.76100
[3] Hughes, T. J.R., Multiscale phenomena: Green’s function, subgrid scale models, bubbles, and the origins of stabilized formulations, (Cecchi, M. Morandi; Morgan, K.; Periaux, J.; Schrefler, B. A.; Zienkiewicz, O. C., Proc. 9th Int. Conf. on Finite Elements in Fluids. New Trends and Applications. Proc. 9th Int. Conf. on Finite Elements in Fluids. New Trends and Applications, Venezia, Italy (1995)) · Zbl 0866.76044
[4] Hughes, T. J.R., Multiscale phenomena: Green’s function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations, Comput. Methods Appl. Mech. Engrg., 127, 387-401 (1995) · Zbl 0866.76044
[5] Franca, L. P.; Farhat, C., Bubble functions prompt unusual stabilized finite element methods, Comput. Methods Appl. Mech. Engrg., 123, 299-308 (1994) · Zbl 1067.76567
[6] Douglas, J.; Russell, T. F., Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19, 871-885 (1982) · Zbl 0492.65051
[7] Pironneau, O., On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. Math., 38, 309-332 (1982) · Zbl 0505.76100
[8] Löhner, R.; Morgan, K.; Zienkiewicz, O. C., The solution of non-linear hyperbolic equation systems by the finite element method, Int. J. Numer. Methods Fluids, 4, 1043-1063 (1984) · Zbl 0551.76002
[9] Zienkiewicz, O. C.; Codina, R., A general algorithm for compressible and incompressible flow. Part I: The split, characteristic based scheme, Int. J. Numer. Methods Fluids, 20, 869-885 (1995) · Zbl 0837.76043
[10] Donea, J., A Taylor-Galerkin method for convection transport problems, Int. J. Numer. Methods Engrg., 20, 101-119 (1984) · Zbl 0524.65071
[11] LeVeque, R. J., Numerical Methods for Conservation Laws (1990), Birkhäuser · Zbl 0682.76053
[12] von Neumann, J.; Richtmyer, R. D., A method for the numerical calculation of hydrodynamical shocks, J. Appl. Phys., 21, 232 (1950) · Zbl 0037.12002
[13] Kelly, D. W.; Nakazawa, S.; Zienkiewicz, O. C.; Heinrich, J. C., A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems, Int. J. Numer. Methods Engrg., 15, 1705-1711 (1980) · Zbl 0452.76068
[14] Hughes, T. J.R.; Brooks, A., A multi-dimensional upwind scheme with no crosswind diffusion, (Hughes, T. J.R., FEM for Convection Dominated Rows (1979), ASME: ASME New York) · Zbl 0423.76067
[15] Hughes, T. J.R.; Brooks, A. N., A theoretical framework for Petrov-Galerkin methods, with discontinuous weighting functions: applications to the streamline upwind procedure, (Gallagher, R. H.; Norrie, D. M.; Oden, J. T.; Zienkiewicz, O. C., Finite Element in Fluids, vol. IV (1982), Wiley: Wiley London), 46-65
[16] Codina, R.; Oñate, E.; Cervera, M., The intrinsic time for the SUPG formulation using quadratic elements, Comput. Methods Appl. Mech. Engrg., 94, 239-262 (1992) · Zbl 0748.76082
[17] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 305-328 (1986) · Zbl 0622.76075
[18] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 45, 285-312 (1984) · Zbl 0526.76087
[19] Lesaint, P.; Raviart, P. A., On a finite element method for solving the neutron transport equation, (de Boor, C., Mathematical aspects of the Finite Element Method (1974), Academic Press) · Zbl 0417.65056
[20] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation for the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 85-99 (1986) · Zbl 0622.76077
[21] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag · Zbl 0788.73002
[22] Hughes, T. J.R.; Franca, L. P., A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg., 65, 85-96 (1987) · Zbl 0635.76067
[23] Franca, L. P.; Stenberg, R., Error analysis of some Galerkin least-squares methods for the elasticity equations, SIAM J. Numer. Anal., 28, 1680-1697 (1991) · Zbl 0759.73055
[24] Shakib, F.; Hughes, T. J.R., A new finite element formulation for computational fluid dynamics: IX. Fourier Analysis of space-time Galerkin/least-squares algorithms, Comput. Methods Appl. Mech. Engrg., 87, 35-58 (1991) · Zbl 0760.76051
[25] Harari, I.; Hughes, T. J.R., What are C and h?: Inequalities for the analysis and design of finite element methods, Comput. Methods Appl. Mech. Engrg., 97, 157-192 (1992) · Zbl 0764.73083
[26] Shakib, F.; Hughes, T. J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 89, 141-219 (1991) · Zbl 0838.76040
[27] Douglas, J.; Wang, J., An absolutely stabilized finite element method for the Stokes problem, Math. Comput., 52, 495-508 (1989) · Zbl 0669.76051
[28] Franca, L.; Frey, S. L.; Hughes, T. J.R., Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 95, 253-276 (1992) · Zbl 0759.76040
[29] Bank, R. E.; Welfert, B. D., A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem, Comput. Methods Appl. Mech. Engrg., 83, 61-68 (1990) · Zbl 0732.65100
[30] Brezzi, F.; Bristeau, M. O.; Franca, L.; Mallet, M.; Rogé, G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. Methods Appl. Mech. Engrg., 96, 117-129 (1992) · Zbl 0756.76044
[31] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 337-344 (1984) · Zbl 0593.76039
[32] Baiocchi, C.; Brezzi, F.; Franca, L. P., Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S), Comput. Methods Appl. Mech. Engrg., 105, 125-141 (1993) · Zbl 0772.76033
[33] Codina, R., Numerical solution of the incompressible Navier-Stokes equations with Coriolis forces based on the discretization of the total time derivative, CIMNE Report, Num. 102 (1996)
[34] Zienkiewicz, O. C.; Taylor, R. L., (The Finite Element Method, Vol. 2 (1989), McGraw-Hill)
[35] Ciarlet, P. G.; Raviart, P. A., Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 2, 17-31 (1973) · Zbl 0251.65069
[36] Codina, R., A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. Methods Appl. Mech. Engrg., 110, 325-342 (1993) · Zbl 0844.76048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.