×

Output-based space-time mesh adaptation for the compressible Navier-Stokes equations. (English) Zbl 1416.76211

Summary: This paper presents an output-based adaptive algorithm for unsteady simulations of convection-dominated flows. A space-time discontinuous Galerkin discretization is used in which the spatial meshes remain static in both position and resolution, and in which all elements advance by the same time step. Error estimates are computed using an adjoint-weighted residual, where the discrete adjoint is computed on a finer space obtained by order enrichment of the primal space. An iterative method based on an approximate factorization is used to solve both the forward and adjoint problems. The output error estimate drives a fixed-growth adaptive strategy that employs hanging-node refinement in the spatial domain and slab bisection in the temporal domain. Detection of space-time anisotropy in the localization of the output error is found to be important for efficiency of the adaptive algorithm, and two anisotropy measures are presented: one based on inter-element solution jumps, and one based on projection of the adjoint. Adaptive results are shown for several two-dimensional convection-dominated flows, including the compressible Navier-Stokes equations. For sufficiently-low accuracy levels, output-based adaptation is shown to be advantageous in terms of degrees of freedom when compared to uniform refinement and to adaptive indicators based on approximation error and the unweighted residual. Time integral quantities are used for the outputs of interest, but entire time histories of the integrands are also compared and found to converge rapidly under the proposed scheme. In addition, the final output-adapted space-time meshes are shown to be relatively insensitive to the starting mesh.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76N15 Gas dynamics (general theory)
Full Text: DOI

References:

[1] Pierce, N. A.; Giles, M. B., Adjoint recovery of superconvergent functionals from PDE approximations, SIAM Review, 42, 2, 247-264 (2000) · Zbl 0948.65119
[2] Becker, R.; Rannacher, R., An optimal control approach to a posteriori error estimation in finite element methods, (Iserles, A., Acta Numerica (2001), Cambridge University Press), 1-102 · Zbl 1105.65349
[3] Hartmann, R.; Houston, P., Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, Journal of Computational Physics, 183, 2, 508-532 (2002) · Zbl 1057.76033
[4] Venditti, D. A.; Darmofal, D. L., Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, Journal of Computational Physics, 187, 1, 22-46 (2003) · Zbl 1047.76541
[5] Sen, S.; Veroy, K.; Huynh, D.; Deparis, S.; Nguyen, N.; Patera, A., “Natural norm” a posteriori error estimators for reduced basis approximations, Journal of Computational Physics, 217, 37-62 (2006) · Zbl 1100.65094
[6] M. Nemec, M.J. Aftosmis, Error estimation and adaptive refinement for embedded-boundary Cartesian meshes, in: AIAA Paper 2007-4187, 2007.; M. Nemec, M.J. Aftosmis, Error estimation and adaptive refinement for embedded-boundary Cartesian meshes, in: AIAA Paper 2007-4187, 2007.
[7] Fidkowski, K. J.; Darmofal, D. L., Review of output-based error estimation and mesh adaptation in computational fluid dynamics, American Institute of Aeronautics and Astronautics Journal, 49, 673-694 (2011)
[8] W. Reed, T. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory Technical Report LA-UR-73-479, 1973.; W. Reed, T. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory Technical Report LA-UR-73-479, 1973.
[9] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2-D Euler equations, Journal of Computational Physics, 138, 251-285 (1997) · Zbl 0902.76056
[10] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of Scientific Computing, 16, 3, 173-261 (2001) · Zbl 1065.76135
[11] P. Houston, R. Hartmann, E. Süli, Adaptive discontinuous Galerkin finite element methods for compressible fluid flows, in: M. Baines (Ed.), Numerical Methods for Fluid Dynamics VII, ICFD, 2001, pp. 347-353.; P. Houston, R. Hartmann, E. Süli, Adaptive discontinuous Galerkin finite element methods for compressible fluid flows, in: M. Baines (Ed.), Numerical Methods for Fluid Dynamics VII, ICFD, 2001, pp. 347-353.
[12] Brezzi, F.; Marini, L.; Süli, E., Discontinuous Galerkin methods for first-order hyperbolic problems, Mathematical Models and Methods in Applied Sciences, 14, 1893-1903 (2004) · Zbl 1070.65117
[13] Fidkowski, K. J.; Oliver, T. A.; Lu, J.; Darmofal, D. L., \(p\)-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, Journal of Computational Physics, 207, 92-113 (2005) · Zbl 1177.76194
[14] Johnson, C.; Szepessy, A.; Hansbo, P., Discontinuous Galerkin methods for ordinary differential equations, Mathematics of Computation, 36, 154, 455-473 (1981) · Zbl 0469.65053
[15] Eriksson, K.; Johnson, C.; Thomee, V., Adaptive finite element methods for parabolic problems I: A linear model problem, Mathematical Modelling and Numerical Analysis, 19, 4, 611-643 (1985) · Zbl 0589.65070
[16] Eriksson, K.; Johnson, C., Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM Journal on Numerical Analysis, 28, 1, 43-77 (1991) · Zbl 0732.65093
[17] Liu, W.; Ma, H.; Tang, T.; Yan, N., A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations, SIAM Journal on Numerical Analysis, 42, 3, 1032-1061 (2004) · Zbl 1085.65054
[18] Bar-Yoseph, P.; Elata, D., An efficient L2 Galerkin finite element method for multi-dimensional non-linear hyperbolic systems, International Journal for Numerical Methods in Engineering, 29, 1229-1245 (1990) · Zbl 0714.73068
[19] R.B. Lowrie, P.L. Roe, B. van Leer, Properties of space-time discontinuous Galerkin, Los Alamos Technical Report LA-UR-98-5561, 1998.; R.B. Lowrie, P.L. Roe, B. van Leer, Properties of space-time discontinuous Galerkin, Los Alamos Technical Report LA-UR-98-5561, 1998.
[20] van der Ven, H.; van der Vegt, J., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows II. Efficient flux quadrature, Computer Methods in Applied Mechanical Engineering, 191, 4747-4780 (2002) · Zbl 1099.76521
[21] Klaij, C.; van der Vegt, J.; van der Ven, H., Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations, Journal of Computational Physics, 217, 589-611 (2006) · Zbl 1099.76035
[22] Barth, T. J., Space-time error representation and estimation in Navier-Stokes calculations, (Kassinos, S. C.; Langer, C. A.; Iaccarino, G.; Moin, P., Complex Effects in Large Eddy Simulations. Complex Effects in Large Eddy Simulations, Lecture Notes in Computational Science and Engineering, vol. 26 (2007), Springer: Springer Berlin Heidelberg), 29-48 · Zbl 1303.76084
[23] K. Mani, D.J. Mavriplis, Discrete adjoint based time-step adaptation and error reduction in unsteady flow problems, in: AIAA Paper 2007-3944, 2007.; K. Mani, D.J. Mavriplis, Discrete adjoint based time-step adaptation and error reduction in unsteady flow problems, in: AIAA Paper 2007-3944, 2007.
[24] Mani, K.; Mavriplis, D. J., Error estimation and adaptation for functional outputs in time-dependent flow problems, Journal of Computational Physics, 229, 415-440 (2010) · Zbl 1355.76046
[25] Meidner, D.; Vexler, B., Adaptive space-time finite element methods for parabolic optimization problems, SIAM Journal on Control Optimization, 46, 1, 116-142 (2007) · Zbl 1149.65051
[26] Schmich, M.; Vexler, B., Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations, SIAM Journal on Scientific Computing, 30, 1, 369-393 (2008) · Zbl 1169.65098
[27] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, 43, 357-372 (1981) · Zbl 0474.65066
[28] Bassi, F.; Rebay, S., GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations, (Cockburn, K.; Shu, Discontinuous Galerkin Methods: Theory, Computation and Applications (2000), Springer: Springer Berlin), 197-208 · Zbl 0989.76040
[29] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM Journal on Numerical Analysis, 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[30] J. Lu, An a posteriori error control framework for adaptive precision optimization using discontinuous Galerkin finite element method, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2005.; J. Lu, An a posteriori error control framework for adaptive precision optimization using discontinuous Galerkin finite element method, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2005.
[31] T. Richter, Discontinuous Galerkin as time-stepping scheme for the Navier-Stokes equations, in: Fourth International Conference on High Performance Scientific Computing Modeling, Simulation and Optimization of Complex Processes, 2009.; T. Richter, Discontinuous Galerkin as time-stepping scheme for the Navier-Stokes equations, in: Fourth International Conference on High Performance Scientific Computing Modeling, Simulation and Optimization of Complex Processes, 2009.
[32] Adjerid, S.; Devine, K. D.; Flaherty, J.; Krivodonova, L., A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems, Computer Methods in Applied Mechanical Engineering, 191, 1097-1112 (2002) · Zbl 0998.65098
[33] Leicht, T.; Hartmann, R., Multitarget error estimation and adaptivity in aerodynamic flow simulations, International Journal for Numerical Methods in Fluids, 56, 2111-2138 (2008) · Zbl 1388.76142
[34] X.D. Zhang, M.-G. Vallet, J. Dompierre, P. Labbe, D. Pelletier, J.-Y. Trepanier, R. Camarero, J.V. Lassaline, L.M. Manzano, D.W. Zingg, Mesh adaptation using different error indicators for the Euler equations, in: AIAA Paper 2001-2549, 2001.; X.D. Zhang, M.-G. Vallet, J. Dompierre, P. Labbe, D. Pelletier, J.-Y. Trepanier, R. Camarero, J.V. Lassaline, L.M. Manzano, D.W. Zingg, Mesh adaptation using different error indicators for the Euler equations, in: AIAA Paper 2001-2549, 2001.
[35] Dolejsi, V.; Feistauer, M.; Schwab, C., On some aspects of the discontinuous Galerkin finite element method for conservation laws, Mathematics and Computers in Simulation, 61, 3, 333-346 (2003) · Zbl 1013.65108
[36] Krivodonova, L.; Xin, J.; Remacle, J.; Chevaugeon, N.; Flaherty, J., Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, Applied Numerical Mathematics, 48, 3, 323-338 (2004) · Zbl 1038.65096
[37] G.E. Barter, Shock capturing with PDE-based artificial viscosity for an adaptive higher-order discontinuous Galerkin finite element method, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2008.; G.E. Barter, Shock capturing with PDE-based artificial viscosity for an adaptive higher-order discontinuous Galerkin finite element method, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.