×

Carving out OPE space and precise O(2) model critical exponents. (English) Zbl 1437.81076

Summary: We develop new tools for isolating CFTs using the numerical bootstrap. A “cutting surface” algorithm for scanning OPE coefficients makes it possible to find islands in high-dimensional spaces. Together with recent progress in large-scale semidefinite programming, this enables bootstrap studies of much larger systems of correlation functions than was previously practical. We apply these methods to correlation functions of charge-0, 1, and 2 scalars in the 3d O(2) model, computing new precise values for scaling dimensions and OPE coefficients in this theory. Our new determinations of scaling dimensions are consistent with and improve upon existing Monte Carlo simulations, sharpening the existing decades-old \(8 \sigma\) discrepancy between theory and experiment.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R15 Operator algebra methods applied to problems in quantum theory
90C22 Semidefinite programming

Software:

QCQP; Qhull; SDPB

References:

[1] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE]. · Zbl 1329.81324
[2] V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions, Phys. Rev.D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].
[3] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
[4] S.M. Chester, Weizmann Lectures on the Numerical Conformal Bootstrap, arXiv:1907.05147 [INSPIRE].
[5] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP11 (2014) 109 [arXiv:1406.4858] [INSPIRE]. · Zbl 1392.81202
[6] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N ) Archipelago, JHEP11 (2015) 106 [arXiv:1504.07997] [INSPIRE]. · Zbl 1388.81054
[7] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising and O(N ) Models, JHEP08 (2016) 036 [arXiv:1603.04436] [INSPIRE]. · Zbl 1390.81227
[8] J. Rong and N. Su, Bootstrapping minimal \(\mathcal{N} = 1\) superconformal field theory in three dimensions, arXiv:1807.04434 [INSPIRE].
[9] N.B. Agmon, S.M. Chester and S.S. Pufu, The M-theory Archipelago, JHEP02 (2020) 010 [arXiv:1907.13222] [INSPIRE]. · Zbl 1435.81169
[10] Z. Li and N. Su, Bootstrapping Mixed Correlators in the Five Dimensional Critical O(N ) Models, JHEP04 (2017) 098 [arXiv:1607.07077] [INSPIRE]. · Zbl 1378.81120
[11] Y. Nakayama and T. Ohtsuki, Conformal Bootstrap Dashing Hopes of Emergent Symmetry, Phys. Rev. Lett.117 (2016) 131601 [arXiv:1602.07295] [INSPIRE].
[12] D. Li, D. Meltzer and A. Stergiou, Bootstrapping mixed correlators in 4D \(\mathcal{N} = 1\) SCFTs, JHEP07 (2017) 029 [arXiv:1702.00404] [INSPIRE]. · Zbl 1380.81405
[13] C. Behan, Bootstrapping the long-range Ising model in three dimensions, J. Phys.A 52 (2019) 075401 [arXiv:1810.07199] [INSPIRE]. · Zbl 1505.82012
[14] S.R. Kousvos and A. Stergiou, Bootstrapping Mixed Correlators in Three-Dimensional Cubic Theories, SciPost Phys.6 (2019) 035 [arXiv:1810.10015] [INSPIRE].
[15] S.R. Kousvos and A. Stergiou, Bootstrapping Mixed Correlators in Three-Dimensional Cubic Theories II, arXiv:1911.00522 [INSPIRE].
[16] L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Bootstrapping 3D Fermions, JHEP03 (2016) 120 [arXiv:1508.00012] [INSPIRE].
[17] L. Iliesiu, F. Kos, D. Poland, S.S. Pufu and D. Simmons-Duffin, Bootstrapping 3D Fermions with Global Symmetries, JHEP01 (2018) 036 [arXiv:1705.03484] [INSPIRE].
[18] D. Karateev, P. Kravchuk, M. Serone and A. Vichi, Fermion Conformal Bootstrap in 4d, JHEP06 (2019) 088 [arXiv:1902.05969] [INSPIRE]. · Zbl 1416.81158
[19] A. Dymarsky, J. Penedones, E. Trevisani and A. Vichi, Charting the space of 3D CFTs with a continuous global symmetry, JHEP05 (2019) 098 [arXiv:1705.04278] [INSPIRE].
[20] M. Reehorst, E. Trevisani and A. Vichi, Mixed Scalar-Current bootstrap in three dimensions, arXiv:1911.05747 [INSPIRE].
[21] A. Dymarsky, F. Kos, P. Kravchuk, D. Poland and D. Simmons-Duffin, The 3d Stress-Tensor Bootstrap, JHEP02 (2018) 164 [arXiv:1708.05718] [INSPIRE]. · Zbl 1387.81313
[22] R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D Conformal Field Theories with Global Symmetry, J. Phys.A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE]. · Zbl 1206.81116
[23] A. Vichi, Improved bounds for CFT’s with global symmetries, JHEP01 (2012) 162 [arXiv:1106.4037] [INSPIRE]. · Zbl 1306.81289
[24] D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of 4D CFTs, JHEP05 (2012) 110 [arXiv:1109.5176] [INSPIRE].
[25] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N ) vector models, JHEP06 (2014) 091 [arXiv:1307.6856] [INSPIRE]. · Zbl 1392.81202
[26] M. Berkooz, R. Yacoby and A. Zait, Bounds on \(\mathcal{N} = 1\) superconformal theories with global symmetries, JHEP08 (2014) 008 [Erratum ibid.01 (2015) 132] [arXiv:1402.6068] [INSPIRE]. · Zbl 1333.81361
[27] Y. Nakayama and T. Ohtsuki, Approaching the conformal window of O(n) × O(m) symmetric Landau-Ginzburg models using the conformal bootstrap, Phys. Rev.D 89 (2014) 126009 [arXiv:1404.0489] [INSPIRE].
[28] F. Caracciolo, A. Castedo Echeverri, B. von Harling and M. Serone, Bounds on OPE Coefficients in 4D Conformal Field Theories, JHEP10 (2014) 020 [arXiv:1406.7845] [INSPIRE]. · Zbl 1333.81365
[29] Y. Nakayama and T. Ohtsuki, Bootstrapping phase transitions in QCD and frustrated spin systems, Phys. Rev.D 91 (2015) 021901 [arXiv:1407.6195] [INSPIRE].
[30] S.M. Chester, S.S. Pufu and R. Yacoby, Bootstrapping O(N ) vector models in 4 < d < 6, Phys. Rev.D 91 (2015) 086014 [arXiv:1412.7746] [INSPIRE].
[31] Y. Nakayama and T. Ohtsuki, Five dimensional O(N )-symmetric CFTs from conformal bootstrap, Phys. Lett.B 734 (2014) 193 [arXiv:1404.5201] [INSPIRE].
[32] S.M. Chester, S. Giombi, L.V. Iliesiu, I.R. Klebanov, S.S. Pufu and R. Yacoby, Accidental Symmetries and the Conformal Bootstrap, JHEP01 (2016) 110 [arXiv:1507.04424] [INSPIRE]. · Zbl 1388.81382
[33] S.M. Chester, L.V. Iliesiu, S.S. Pufu and R. Yacoby, Bootstrapping O(N ) Vector Models with Four Supercharges in 3 ≤ d ≤ 4, JHEP05 (2016) 103 [arXiv:1511.07552] [INSPIRE]. · Zbl 1388.81206
[34] S.M. Chester and S.S. Pufu, Towards bootstrapping QED_3 , JHEP08 (2016) 019 [arXiv:1601.03476] [INSPIRE]. · Zbl 1390.81498
[35] Y. Nakayama, Bootstrap bound for conformal multi-flavor QCD on lattice, JHEP07 (2016) 038 [arXiv:1605.04052] [INSPIRE].
[36] H. Iha, H. Makino and H. Suzuki, Upper bound on the mass anomalous dimension in many-flavor gauge theories: a conformal bootstrap approach, PTEP2016 (2016) 053B03 [arXiv:1603.01995] [INSPIRE]. · Zbl 1361.81137
[37] Y. Nakayama, Bootstrap experiments on higher dimensional CFTs, Int. J. Mod. Phys.A 33 (2018) 1850036 [arXiv:1705.02744] [INSPIRE].
[38] J. Rong and N. Su, Scalar CFTs and Their Large N Limits, JHEP09 (2018) 103 [arXiv:1712.00985] [INSPIRE]. · Zbl 1398.81223
[39] S.M. Chester, L.V. Iliesiu, M. Mezei and S.S. Pufu, Monopole Operators in U(1) Chern-Simons-Matter Theories, JHEP05 (2018) 157 [arXiv:1710.00654] [INSPIRE]. · Zbl 1391.81153
[40] A. Stergiou, Bootstrapping hypercubic and hypertetrahedral theories in three dimensions, JHEP05 (2018) 035 [arXiv:1801.07127] [INSPIRE]. · Zbl 1391.81174
[41] Z. Li, Solving QED3 with Conformal Bootstrap, arXiv:1812.09281 [INSPIRE].
[42] J. Rong and N. Su, Bootstrapping the \(\mathcal{N} = 1\) Wess-Zumino models in three dimensions, arXiv:1910.08578 [INSPIRE].
[43] S. Rychkov, Conformal Bootstrap in Three Dimensions?, arXiv:1111.2115 [INSPIRE]. · Zbl 1365.81007
[44] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev.D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE]. · Zbl 1310.82013
[45] D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP03 (2014) 100 [arXiv:1310.5078] [INSPIRE].
[46] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents, J. Stat. Phys.157 (2014) 869 [arXiv:1403.4545] [INSPIRE]. · Zbl 1310.82013
[47] C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Spheres, Charges, Instantons and Bootstrap: A Five-Dimensional Odyssey, JHEP03 (2018) 123 [arXiv:1710.08418] [INSPIRE]. · Zbl 1388.81740
[48] Z. Li and N. Su, 3D CFT Archipelago from Single Correlator Bootstrap, Phys. Lett.B 797 (2019) 134920 [arXiv:1706.06960] [INSPIRE].
[49] C. Hasegawa and Y. Nakayama, Three ways to solve critical ϕ^4theory on 4 − ϵ dimensional real projective space: perturbation, bootstrap and Schwinger-Dyson equation, Int. J. Mod. Phys.A 33 (2018) 1850049 [arXiv:1801.09107] [INSPIRE]. · Zbl 1385.81032
[50] C.N. Gowdigere, J. Santara and Sumedha, Conformal Bootstrap Signatures of the Tricritical Ising Universality Class, arXiv:1811.11442 [INSPIRE].
[51] A. Stergiou, Bootstrapping MN and Tetragonal CFTs in Three Dimensions, SciPost Phys.7 (2019) 010 [arXiv:1904.00017] [INSPIRE].
[52] D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP05 (2011) 017 [arXiv:1009.2087] [INSPIRE]. · Zbl 1296.81067
[53] C. Beem, L. Rastelli and B.C. van Rees, The \(\mathcal{N} = 4\) Superconformal Bootstrap, Phys. Rev. Lett.111 (2013) 071601 [arXiv:1304.1803] [INSPIRE]. · Zbl 1388.81482
[54] L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, JHEP09 (2014) 144 [arXiv:1310.3757] [INSPIRE].
[55] L.F. Alday and A. Bissi, Generalized bootstrap equations for \(\mathcal{N} = 4\) SCFT, JHEP02 (2015) 101 [arXiv:1404.5864] [INSPIRE]. · Zbl 1388.81098
[56] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The \(\mathcal{N} = 8\) superconformal bootstrap in three dimensions, JHEP09 (2014) 143 [arXiv:1406.4814] [INSPIRE].
[57] C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The \(\mathcal{N} = 2\) superconformal bootstrap, JHEP03 (2016) 183 [arXiv:1412.7541] [INSPIRE]. · Zbl 1388.81482
[58] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with Four Supercharges, JHEP08 (2015) 142 [arXiv:1503.02081] [INSPIRE]. · Zbl 1388.81638
[59] C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev.D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE]. · Zbl 1388.81482
[60] D. Poland and A. Stergiou, Exploring the Minimal 4D \(\mathcal{N} = 1\) SCFT, JHEP12 (2015) 121 [arXiv:1509.06368] [INSPIRE]. · Zbl 1388.81691
[61] M. Lemos and P. Liendo, Bootstrapping \(\mathcal{N} = 2\) chiral correlators, JHEP01 (2016) 025 [arXiv:1510.03866] [INSPIRE]. · Zbl 1388.81056
[62] Y.-H. Lin, S.-H. Shao, D. Simmons-Duffin, Y. Wang and X. Yin, \( \mathcal{N} = 4\) superconformal bootstrap of the K 3 CFT, JHEP05 (2017) 126 [arXiv:1511.04065] [INSPIRE].
[63] Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, (2, 2) superconformal bootstrap in two dimensions, JHEP05 (2017) 112 [arXiv:1610.05371] [INSPIRE].
[64] J.-B. Bae, D. Gang and J. Lee, 3d \(\mathcal{N} = 2\) minimal SCFTs from Wrapped M5-branes, JHEP08 (2017) 118 [arXiv:1610.09259] [INSPIRE]. · Zbl 1381.81128
[65] M. Lemos, P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping \(\mathcal{N} = 3\) superconformal theories, JHEP04 (2017) 032 [arXiv:1612.01536] [INSPIRE]. · Zbl 1378.81142
[66] C. Beem, L. Rastelli and B.C. van Rees, More \(\mathcal{N} = 4\) superconformal bootstrap, Phys. Rev.D 96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].
[67] M. Cornagliotto, M. Lemos and V. Schomerus, Long Multiplet Bootstrap, JHEP10 (2017) 119 [arXiv:1702.05101] [INSPIRE].
[68] C.-M. Chang and Y.-H. Lin, Carving Out the End of the World or (Superconformal Bootstrap in Six Dimensions), JHEP08 (2017) 128 [arXiv:1705.05392] [INSPIRE]. · Zbl 1381.83122
[69] M. Cornagliotto, M. Lemos and P. Liendo, Bootstrapping the (A_1, A_2 ) Argyres-Douglas theory, JHEP03 (2018) 033 [arXiv:1711.00016] [INSPIRE].
[70] N.B. Agmon, S.M. Chester and S.S. Pufu, Solving M-theory with the Conformal Bootstrap, JHEP06 (2018) 159 [arXiv:1711.07343] [INSPIRE]. · Zbl 1395.81195
[71] M. Baggio, N. Bobev, S.M. Chester, E. Lauria and S.S. Pufu, Decoding a Three-Dimensional Conformal Manifold, JHEP02 (2018) 062 [arXiv:1712.02698] [INSPIRE]. · Zbl 1387.81304
[72] P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping the half-BPS line defect, JHEP10 (2018) 077 [arXiv:1806.01862] [INSPIRE]. · Zbl 1402.81247
[73] A. Atanasov, A. Hillman and D. Poland, Bootstrapping the Minimal 3D SCFT, JHEP11 (2018) 140 [arXiv:1807.05702] [INSPIRE].
[74] C.-M. Chang, M. Fluder, Y.-H. Lin, S.-H. Shao and Y. Wang, 3d N = 4 Bootstrap and Mirror Symmetry, arXiv:1910.03600 [INSPIRE].
[75] R. Rattazzi, S. Rychkov and A. Vichi, Central Charge Bounds in 4D Conformal Field Theory, Phys. Rev.D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE]. · Zbl 1206.81116
[76] F. Caracciolo and V.S. Rychkov, Rigorous Limits on the Interaction Strength in Quantum Field Theory, Phys. Rev.D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].
[77] P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFT_d , JHEP07 (2013) 113 [arXiv:1210.4258] [INSPIRE]. · Zbl 1342.81504
[78] S. El-Showk and M.F. Paulos, Bootstrapping Conformal Field Theories with the Extremal Functional Method, Phys. Rev. Lett.111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].
[79] Y. Nakayama, Bootstrapping critical Ising model on three-dimensional real projective space, Phys. Rev. Lett.116 (2016) 141602 [arXiv:1601.06851] [INSPIRE].
[80] A. Castedo Echeverri, B. von Harling and M. Serone, The Effective Bootstrap, JHEP09 (2016) 097 [arXiv:1606.02771] [INSPIRE].
[81] A. Cappelli, L. Maffi and S. Okuda, Critical Ising Model in Varying Dimension by Conformal Bootstrap, JHEP01 (2019) 161 [arXiv:1811.07751] [INSPIRE]. · Zbl 1409.81112
[82] D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal Bootstrap, JHEP06 (2015) 174 [arXiv:1502.02033] [INSPIRE].
[83] W. Landry and D. Simmons-Duffin, Scaling the semidefinite program solver SDPB, arXiv:1909.09745 [INSPIRE].
[84] M. Go and Y. Tachikawa, autoboot: A generator of bootstrap equations with global symmetry, JHEP06 (2019) 084 [arXiv:1903.10522] [INSPIRE].
[85] J.A. Lipa, J.A. Nissen, D.A. Stricker, D.R. Swanson and T.C.P. Chui, Specific heat of liquid helium in zero gravity very near the lambda point, Phys. Rev.B 68 (2003) 174518 [cond-mat/0310163] [INSPIRE].
[86] M. Hasenbusch, Monte Carlo study of an improved clock model in three dimensions, Phys. Rev.B 100 (2019) 224517 [arXiv:1910.05916] [INSPIRE].
[87] M. Hasenbusch and E. Vicari, Anisotropic perturbations in three-dimensional O(N )-symmetric vector models, Phys. Rev.B 84 (2011) 125136.
[88] D. Tilley and J. Tilley, Superfluidity and Superconductivity, Graduate Student Series in Physics, Taylor & Francis (1990).
[89] M.R. Moldover, J.V. Sengers, R.W. Gammon and R.J. Hocken, Gravity effects in fluids near the gas-liquid critical point, Rev. Mod. Phys.51 (1979) 79 [INSPIRE].
[90] J.A. Lipa, D.R. Swanson, J.A. Nissen, T.C.P. Chui and U.E. Israelsson, Heat Capacity and Thermal Relaxation of Bulk Helium very near the Lambda Point, Phys. Rev. Lett.76 (1996) 944 [INSPIRE].
[91] J.A. Lipa et al., Specific Heat of Helium Confined to a 57- mum Planar Geometry near the Lambda Point, Phys. Rev. Lett.84 (2000) 4894 [INSPIRE].
[92] A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept.368 (2002) 549 [cond-mat/0012164] [INSPIRE]. · Zbl 0997.82019
[93] E. Burovski, J. Machta, N. Prokof ’ev and B. Svistunov, High-precision measurement of the thermal exponent for the three-dimensionalxyuniversality class, Phys. Rev.B 74 (2006) .
[94] A.I. Sokolov and M.A. Nikitina, Critical Exponents of Superfluid Helium and Pseudo-ϵ Expansion, PhysicaA 444 (2016) 177 [arXiv:1402.4318] [INSPIRE].
[95] W. Xu, Y. Sun, J.-P. Lv and Y. Deng, High-precision Monte Carlo study of several models in the three-dimensional U(1) universality class, Phys. Rev.B 100 (2019) 064525 [arXiv:1908.10990] [INSPIRE].
[96] M. Campostrini, M. Hasenbusch, A. Pelissetto and E. Vicari, The Critical exponents of the superfluid transition in He-4, Phys. Rev.B 74 (2006) 144506 [cond-mat/0605083] [INSPIRE]. · Zbl 1087.82502
[97] D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP03 (2017) 086 [arXiv:1612.08471] [INSPIRE]. · Zbl 1377.81184
[98] S. Albayrak, D. Meltzer and D. Poland, More Analytic Bootstrap: Nonperturbative Effects and Fermions, JHEP08 (2019) 040 [arXiv:1904.00032] [INSPIRE]. · Zbl 1421.81104
[99] R. Guida and J. Zinn-Justin, Critical exponents of the N vector model, J. Phys.A 31 (1998) 8103 [cond-mat/9803240] [INSPIRE]. · Zbl 0978.82037
[100] F. Jasch and H. Kleinert, Fast-convergent resummation algorithm and critical exponents of ϕ^4theory in three dimensions, J. Math. Phys.42 (2001) 52 [cond-mat/9906246] [INSPIRE]. · Zbl 1013.81039
[101] S. Rychkov and Z.M. Tan, The E-expansion from conformal field theory, J. Phys.A 48 (2015) 29FT01 [arXiv:1505.00963] [INSPIRE]. · Zbl 1320.81082
[102] P. Calabrese, A. Pelissetto and E. Vicari, Multicritical phenomena in O(n_1 ) ⊕ O(n_2 ) symmetric theories, Phys. Rev.B 67 (2003) 054505 [cond-mat/0209580] [INSPIRE].
[103] M. De Prato, A. Pelissetto and E. Vicari, Third harmonic exponent in three-dimensional N vector models, Phys. Rev.B 68 (2003) 092403 [cond-mat/0302145] [INSPIRE].
[104] M. Caselle and M. Hasenbusch, The Stability of the O(N ) invariant fixed point in three-dimensions, J. Phys.A 31 (1998) 4603 [cond-mat/9711080] [INSPIRE]. · Zbl 0952.82008
[105] J.M. Carmona, A. Pelissetto and E. Vicari, The N component Ginzburg-Landau Hamiltonian with cubic anisotropy: A Six loop study, Phys. Rev.B 61 (2000) 15136 [cond-mat/9912115] [INSPIRE].
[106] H. Shao, W. Guo and A.W. Sandvik, Monte Carlo Renormalization Flows in the Space of Relevant and Irrelevant Operators: Application to Three-Dimensional Clock Models, Phys. Rev. Lett.124 (2020) 080602 [arXiv:1905.13640] [INSPIRE].
[107] O. Nachtmann, Positivity constraints for anomalous dimensions, Nucl. Phys.B 63 (1973) 237 [INSPIRE].
[108] Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].
[109] M.S. Costa, T. Hansen and J. Penedones, Bounds for OPE coefficients on the Regge trajectory, JHEP10 (2017) 197 [arXiv:1707.07689] [INSPIRE]. · Zbl 1383.81197
[110] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE]. · Zbl 1342.83239
[111] D. Meltzer, Higher Spin ANEC and the Space of CFTs, JHEP07 (2019) 001 [arXiv:1811.01913] [INSPIRE]. · Zbl 1418.81076
[112] S. Rychkov unpublished work.
[113] J.H. Park and S. Boyd, General heuristics for nonconvex quadratically constrained quadratic programming, arXiv:1703.07870.
[114] C. Sun and R. Dai, An iterative rank penalty method for nonconvex quadratically constrained quadratic programs, SIAM J. Control Optim.57 (2019) 3749. · Zbl 1430.90454
[115] C.B. Barber, D.P. Dobkin and H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Trans. Math. Software22 (1996) 469. · Zbl 0884.65145
[116] P. Calabrese and P. Parruccini, Harmonic crossover exponents in O(n) models with the pseudo-E-expansion approach, Phys. Rev.B 71 (2005) 064416 [cond-mat/0411027] [INSPIRE]. · Zbl 1036.82506
[117] E. Katz, S. Sachdev, E.S. Sørensen and W. Witczak-Krempa, Conformal field theories at nonzero temperature: Operator product expansions, Monte Carlo and holography, Phys. Rev.B 90 (2014) 245109 [arXiv:1409.3841] [INSPIRE].
[118] L. Iliesiu, M. Koloğlu, R. Mahajan, E. Perlmutter and D. Simmons-Duffin, The Conformal Bootstrap at Finite Temperature, JHEP10 (2018) 070 [arXiv:1802.10266] [INSPIRE]. · Zbl 1402.81226
[119] J. Towns et al., Xsede: Accelerating scientific discovery, Comput. Sci. Eng.16 (2014) 62.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.