×

Exploring the minimal 4D \( \mathcal{N}=1 \) SCFT. (English) Zbl 1388.81691

Summary: We study the conformal bootstrap constraints for 4D \(\mathcal N=1\) superconformal field theories containing a chiral operator \(\phi\) and the chiral ring relation \(\phi^2=0\). Hints for a minimal interacting SCFT in this class have appeared in previous numerical bootstrap studies. We perform a detailed study of the properties of this conjectured theory, establishing that the corresponding solution to the bootstrap constraints contains a \(\mathrm{ U}(1)_R\) current multiplet and estimating the central charge and low-lying operator spectrum of this theory.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

Software:

SDPB

References:

[1] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev.D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].
[2] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents, J. Stat. Phys.157 (2014) 869 [arXiv:1403.4545] [INSPIRE]. · Zbl 1310.82013
[3] S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Conformal Field Theories in Fractional Dimensions, Phys. Rev. Lett.112 (2014) 141601 [arXiv:1309.5089] [INSPIRE]. · doi:10.1103/PhysRevLett.112.141601
[4] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP11 (2014) 109 [arXiv:1406.4858] [INSPIRE]. · doi:10.1007/JHEP11(2014)109
[5] D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal Bootstrap, JHEP06 (2015) 174 [arXiv:1502.02033] [INSPIRE]. · doi:10.1007/JHEP06(2015)174
[6] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N ) vector models, JHEP06 (2014) 091 [arXiv:1307.6856] [INSPIRE]. · Zbl 1392.81202 · doi:10.1007/JHEP06(2014)091
[7] Y. Nakayama and T. Ohtsuki, Five dimensional O(N )-symmetric CFTs from conformal bootstrap, Phys. Lett.B 734 (2014) 193 [arXiv:1404.5201] [INSPIRE]. · doi:10.1016/j.physletb.2014.05.058
[8] J.-B. Bae and S.-J. Rey, Conformal Bootstrap Approach to O(N) Fixed Points in Five Dimensions, arXiv:1412.6549 [INSPIRE].
[9] S.M. Chester, S.S. Pufu and R. Yacoby, Bootstrapping O(N ) vector models in 4 < d < 6, Phys. Rev.D 91 (2015) 086014 [arXiv:1412.7746] [INSPIRE].
[10] Y. Nakayama and T. Ohtsuki, Approaching the conformal window of O(n) × O(m) symmetric Landau-Ginzburg models using the conformal bootstrap, Phys. Rev.D 89 (2014) 126009 [arXiv:1404.0489] [INSPIRE].
[11] Y. Nakayama and T. Ohtsuki, Bootstrapping phase transitions in QCD and frustrated spin systems, Phys. Rev.D 91 (2015) 021901 [arXiv:1407.6195] [INSPIRE].
[12] H. Shimada and S. Hikami, Fractal dimensions of self-avoiding walks and Ising high-temperature graphs in 3D conformal bootstrap, arXiv:1509.04039 [INSPIRE]. · Zbl 1360.82084
[13] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) Archipelago, JHEP11 (2015) 106 [arXiv:1504.07997] [INSPIRE]. · Zbl 1388.81054 · doi:10.1007/JHEP11(2015)106
[14] L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Bootstrapping 3D Fermions, arXiv:1508.00012 [INSPIRE].
[15] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping the Three-Dimensional Supersymmetric Ising Model, Phys. Rev. Lett.115 (2015) 051601 [arXiv:1502.04124] [INSPIRE]. · doi:10.1103/PhysRevLett.115.051601
[16] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with Four Supercharges, JHEP08 (2015) 142 [arXiv:1503.02081] [INSPIRE]. · Zbl 1388.81638
[17] S.M. Chester, S. Giombi, L.V. Iliesiu, I.R. Klebanov, S.S. Pufu and R. Yacoby, Accidental Symmetries and the Conformal Bootstrap, arXiv:1507.04424 [INSPIRE]. · Zbl 1388.81382
[18] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, \[TheN=8 \mathcal{N}=8\] superconformal bootstrap in three dimensions, JHEP09 (2014) 143 [arXiv:1406.4814] [INSPIRE]. · doi:10.1007/JHEP09(2014)143
[19] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, Exact Correlators of BPS Operators from the 3d Superconformal Bootstrap, JHEP03 (2015) 130 [arXiv:1412.0334] [INSPIRE]. · Zbl 1388.81711 · doi:10.1007/JHEP03(2015)130
[20] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys.336 (2015) 1359 [arXiv:1312.5344] [INSPIRE]. · Zbl 1320.81076 · doi:10.1007/s00220-014-2272-x
[21] C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, JHEP05 (2015) 020 [arXiv:1408.6522] [INSPIRE]. · Zbl 1388.81766 · doi:10.1007/JHEP05(2015)020
[22] C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, \[TheN=2 \mathcal{N}=2\] superconformal bootstrap, arXiv:1412.7541 [INSPIRE]. · Zbl 1388.81482
[23] C. Beem, L. Rastelli and B.C. van Rees, \[TheN=4 \mathcal{N}=4\] Superconformal Bootstrap, Phys. Rev. Lett.111 (2013) 071601 [arXiv:1304.1803] [INSPIRE]. · doi:10.1103/PhysRevLett.111.071601
[24] L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, JHEP09 (2014) 144 [arXiv:1310.3757] [INSPIRE]. · doi:10.1007/JHEP09(2014)144
[25] L.F. Alday and A. Bissi, Generalized bootstrap equations \[forN=4 \mathcal{N}=4\] SCFT, JHEP02 (2015) 101 [arXiv:1404.5864] [INSPIRE]. · Zbl 1388.81098
[26] L.F. Alday, A. Bissi and T. Lukowski, Lessons from crossing symmetry at large-N , JHEP06 (2015) 074 [arXiv:1410.4717] [INSPIRE]. · Zbl 1387.81041 · doi:10.1007/JHEP06(2015)074
[27] C. Beem, L. Rastelli and B.C. van Rees, \[W \mathcal{W}\] symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE]. · Zbl 1397.81290 · doi:10.1007/JHEP05(2015)017
[28] C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, arXiv:1507.05637 [INSPIRE]. · Zbl 1388.81482
[29] D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of 4D CFTs, JHEP05 (2012) 110 [arXiv:1109.5176] [INSPIRE]. · doi:10.1007/JHEP05(2012)110
[30] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE]. · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[31] V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions, Phys. Rev.D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].
[32] F. Caracciolo and V.S. Rychkov, Rigorous Limits on the Interaction Strength in Quantum Field Theory, Phys. Rev.D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].
[33] D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP05 (2011) 017 [arXiv:1009.2087] [INSPIRE]. · Zbl 1296.81067 · doi:10.1007/JHEP05(2011)017
[34] R. Rattazzi, S. Rychkov and A. Vichi, Central Charge Bounds in 4D Conformal Field Theory, Phys. Rev.D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].
[35] R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D Conformal Field Theories with Global Symmetry, J. Phys.A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE]. · Zbl 1206.81116
[36] A. Vichi, Improved bounds for CFT’s with global symmetries, JHEP01 (2012) 162 [arXiv:1106.4037] [INSPIRE]. · Zbl 1306.81289 · doi:10.1007/JHEP01(2012)162
[37] J.-H. Park, N=1 superconformal symmetry in four-dimensions, Int. J. Mod. Phys.A 13 (1998) 1743 [hep-th/9703191] [INSPIRE]. · Zbl 0936.81045 · doi:10.1142/S0217751X98000755
[38] H. Osborn, N=1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys.272 (1999) 243 [hep-th/9808041] [INSPIRE]. · Zbl 0916.53049 · doi:10.1006/aphy.1998.5893
[39] J.-F. Fortin, K. Intriligator and A. Stergiou, Current OPEs in Superconformal Theories, JHEP09 (2011) 071 [arXiv:1107.1721] [INSPIRE]. · Zbl 1301.81252 · doi:10.1007/JHEP09(2011)071
[40] W.D. Goldberger, W. Skiba and M. Son, Superembedding Methods for 4d N = 1 SCFTs, Phys. Rev.D 86 (2012) 025019 [arXiv:1112.0325] [INSPIRE].
[41] W.D. Goldberger, Z.U. Khandker, D. Li and W. Skiba, Superembedding Methods for Current Superfields, Phys. Rev.D 88 (2013) 125010 [arXiv:1211.3713] [INSPIRE].
[42] Z.U. Khandker and D. Li, Superembedding Formalism and Supertwistors, arXiv:1212.0242 [INSPIRE].
[43] M. Berkooz, R. Yacoby and A. Zait, Bounds \[onN=1 \mathcal{N}=1\] superconformal theories with global symmetries, JHEP08 (2014) 008 [Erratum ibid.01 (2015) 132] [arXiv:1402.6068] [INSPIRE]. · Zbl 1388.81634
[44] Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, \[N \mathcal{N} = 1\] superconformal blocks for general scalar operators, JHEP08 (2014) 049 [arXiv:1404.5300] [INSPIRE]. · doi:10.1007/JHEP08(2014)049
[45] A.L. Fitzpatrick, J. Kaplan, Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, Covariant Approaches to Superconformal Blocks, JHEP08 (2014) 129 [arXiv:1402.1167] [INSPIRE]. · doi:10.1007/JHEP08(2014)129
[46] P. Kumar, D. Li, D. Poland and A. Stergiou, OPE Methods for the Holomorphic Higgs Portal, JHEP08 (2014) 016 [arXiv:1401.7690] [INSPIRE]. · doi:10.1007/JHEP08(2014)016
[47] D. Li and A. Stergiou, Two-point functions of conformal primary operators \[inN=1 \mathcal{N}=1\] superconformal theories, JHEP10 (2014) 37 [arXiv:1407.6354] [INSPIRE]. · Zbl 1310.90104 · doi:10.1007/JHEP10(2014)037
[48] M. Flato and C. Fronsdal, Representations of Conformal Supersymmetry, Lett. Math. Phys.8 (1984) 159 [INSPIRE]. · Zbl 0552.17002 · doi:10.1007/BF00406399
[49] V.K. Dobrev and V.B. Petkova, All Positive Energy Unitary Irreducible Representations of Extended Conformal Supersymmetry, Phys. Lett.B 162 (1985) 127 [INSPIRE]. · doi:10.1016/0370-2693(85)91073-1
[50] D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP05 (2008) 012 [arXiv:0803.1467] [INSPIRE]. · doi:10.1088/1126-6708/2008/05/012
[51] S. Ferrara, J. Iliopoulos and B. Zumino, Supergauge Invariance and the Gell-Mann-Low Eigenvalue, Nucl. Phys.B 77 (1974) 413 [INSPIRE].
[52] C.R. Nappi, On O(N) Symmetric Wess-Zumino Type Models, Phys. Rev.D 28 (1983) 3090 [INSPIRE].
[53] P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys.B 448 (1995) 93 [hep-th/9505062] [INSPIRE]. · Zbl 1009.81572 · doi:10.1016/0550-3213(95)00281-V
[54] A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP04 (2014) 001 [arXiv:1401.0740] [INSPIRE]. · doi:10.1007/JHEP04(2014)001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.