×

Towards bootstrapping \(QED_{3}\). (English) Zbl 1390.81498

Summary: We initiate the conformal bootstrap study of Quantum Electrodynamics in \(2+1\) space-time dimensions (\(QED_{3}\)) with \(N\) flavors of charged fermions by focusing on the 4-point function of four monopole operators with the lowest unit of topological charge. We obtain upper bounds on the scaling dimension of the doubly-charged monopole operator, with and without assuming other gaps in the operator spectrum. Intriguingly, we find a (gap-dependent) kink in these bounds that comes reasonably close to the large \(N\) extrapolation of the scaling dimensions of the singly-charged and doubly-charged monopole operators down to \(N = 4\) and \(N = 6\).

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C50 Electromagnetic fields in general relativity and gravitational theory

Software:

SDPB

References:

[1] Pisarski, RD, Chiral symmetry breaking in three-dimensional electrodynamics, Phys. Rev., D 29, 2423, (1984)
[2] Polyakov, AM, Compact gauge fields and the infrared catastrophe, Phys. Lett., B 59, 82, (1975) · doi:10.1016/0370-2693(75)90162-8
[3] Polyakov, AM, Quark confinement and topology of gauge groups, Nucl. Phys., B 120, 429, (1977) · doi:10.1016/0550-3213(77)90086-4
[4] Appelquist, T.; Nash, D.; Wijewardhana, LCR, Critical behavior in (2 + 1)-dimensional QED, Phys. Rev. Lett., 60, 2575, (1988) · doi:10.1103/PhysRevLett.60.2575
[5] Nash, D., Higher order corrections in (2 + 1)-dimensional QED, Phys. Rev. Lett., 62, 3024, (1989) · doi:10.1103/PhysRevLett.62.3024
[6] Pietro, L.; Komargodski, Z.; Shamir, I.; Stamou, E., Quantum electrodynamics in D = 3 from the ε expansion, Phys. Rev. Lett., 116, 131601, (2016) · doi:10.1103/PhysRevLett.116.131601
[7] Giombi, S.; Klebanov, IR; Tarnopolsky, G., Conformal QED_{d}, F -theorem and the ϵ expansion, J. Phys., A 49, 135403, (2016) · Zbl 1348.81454
[8] S.J. Hands, J.B. Kogut, L. Scorzato and C.G. Strouthos, Non-compact QED_{3}with N_{\(f\)} = 1 and N_{\(f\)} = 4, Phys. Rev.B 70 (2004) 104501 [hep-lat/0404013] [INSPIRE].
[9] C. Strouthos and J.B. Kogut, The phases of non-compact QED_{3}, PoS (LATTICE 2007) 278 [arXiv:0804.0300] [INSPIRE].
[10] Karthik, N.; Narayanan, R., No evidence for bilinear condensate in parity-invariant three-dimensional QED with massless fermions, Phys. Rev., D 93, 045020, (2016)
[11] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., Bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031, (2008) · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[12] Kos, F.; Poland, D.; Simmons-Duffin, D., Bootstrapping mixed correlators in the 3D Ising model, JHEP, 11, 109, (2014) · doi:10.1007/JHEP11(2014)109
[13] Kos, F.; Poland, D.; Simmons-Duffin, D., Bootstrapping the O(N) vector models, JHEP, 06, 091, (2014) · Zbl 1392.81202 · doi:10.1007/JHEP06(2014)091
[14] Kos, F.; Poland, D.; Simmons-Duffin, D.; Vichi, A., Bootstrapping the O(N) archipelago, JHEP, 11, 106, (2015) · Zbl 1388.81054 · doi:10.1007/JHEP11(2015)106
[15] Chester, SM; Pufu, SS; Yacoby, R., Bootstrapping O(N) vector models in 4 < d < 6, Phys. Rev., D 91, 086014, (2015)
[16] Iliesiu, L.; Kos, F.; Poland, D.; Pufu, SS; Simmons-Duffin, D.; Yacoby, R., Bootstrapping 3D fermions, JHEP, 03, 120, (2016) · doi:10.1007/JHEP03(2016)120
[17] M. Berkooz, R. Yacoby and A. Zait, Bounds on N = 1 superconformal theories with global symmetries, JHEP08 (2014) 008 [Erratum ibid.01 (2015) 132] [arXiv:1402.6068] [INSPIRE]. · Zbl 1388.81634
[18] Simmons-Duffin, D., A semidefinite program solver for the conformal bootstrap, JHEP, 06, 174, (2015) · doi:10.1007/JHEP06(2015)174
[19] Borokhov, V.; Kapustin, A.; Wu, X-K, Topological disorder operators in three-dimensional conformal field theory, JHEP, 11, 049, (2002) · doi:10.1088/1126-6708/2002/11/049
[20] E. Dyer, M. Mezei and S.S. Pufu, Monopole taxonomy in three-dimensional conformal field theories, arXiv:1309.1160 [INSPIRE].
[21] Wen, X-G; Wu, Y-S, Transitions between the quantum Hall states and insulators induced by periodic potentials, Phys. Rev. Lett., 70, 1501, (1993) · doi:10.1103/PhysRevLett.70.1501
[22] W. Chen, M.P.A. Fisher and Y.-S. Wu, Mott transition in an anyon gas, Phys. Rev.B 48 (1993) 13749 [cond-mat/9301037] [INSPIRE].
[23] S. Sachdev, Nonzero temperature transport near fractional quantum Hall critical points, Phys. Rev.B 57 (1998) 7157 [cond-mat/9709243] [INSPIRE].
[24] W. Rantner and X.-G. Wen, Electron spectral function and algebraic spin liquid for the normal state of underdoped high T_{\(c\)}superconductors, Phys. Rev. Lett.86 (2001) 3871 [cond-mat/0010378] [INSPIRE].
[25] Rantner, W.; Wen, X-G, Spin correlations in the algebraic spin liquid: implications for high-T_{c} superconductors, Phys. Rev., B 66, 144501, (2002) · doi:10.1103/PhysRevB.66.144501
[26] O.I. Motrunich and A. Vishwanath, Emergent photons and new transitions in the O(3) σ-model with hedgehog suppression, Phys. Rev.B 70 (2004) 075104 [cond-mat/0311222] [INSPIRE].
[27] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Deconfined quantum critical points, Science303 (2004) 1490 [cond-mat/0311326].
[28] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath and M.P.A. Fisher, Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm, Phys. Rev.B 70 (2004) 144407 [cond-mat/0312617].
[29] M. Hermele, T. Senthil, M.P.A. Fisher, P.A. Lee, N. Nagaosa and X.-G. Wen, Stability of U(1) spin liquids in two dimensions, Phys. Rev.B 70 (2004) 214437 [cond-mat/0404751] [INSPIRE].
[30] M. Hermele, T. Senthil and M.P.A. Fisher, Algebraic spin liquid as the mother of many competing orders, Phys. Rev.B 72 (2005) 104404 [cond-mat/0502215] [INSPIRE].
[31] Y. Ran and X.-G. Wen, Continuous quantum phase transitions beyond Landau’s paradigm in a large-N spin model, cond-mat/0609620.
[32] Kaul, RK; Kim, YB; Sachdev, S.; Senthil, T., Algebraic charge liquids, Nature Phys., 4, 28, (2008) · doi:10.1038/nphys790
[33] Kaul, RK; Sachdev, S., Quantum criticality of U(1) gauge theories with fermionic and bosonic matter in two spatial dimensions, Phys. Rev., B 77, 155105, (2008) · doi:10.1103/PhysRevB.77.155105
[34] S. Sachdev, The landscape of the Hubbard model, arXiv:1012.0299 [INSPIRE].
[35] S.M. Chester, M. Mezei, S.S. Pufu and I. Yaakov, Monopole operators from the 4 − ϵ expansion, arXiv:1511.07108 [INSPIRE].
[36] Murthy, G.; Sachdev, S., Action of hedgehog instantons in the disordered phase of the (2 + 1)-dimensional CP \^{}{N −1} model, Nucl. Phys., B 344, 557, (1990) · doi:10.1016/0550-3213(90)90670-9
[37] Metlitski, MA; Hermele, M.; Senthil, T.; Fisher, MPA, Monopoles in CP \^{}{N −1} model via the state-operator correspondence, Phys. Rev., B 78, 214418, (2008) · doi:10.1103/PhysRevB.78.214418
[38] Pufu, SS, Anomalous dimensions of monopole operators in three-dimensional quantum electrodynamics, Phys. Rev., D 89, 065016, (2014)
[39] Pufu, SS; Sachdev, S., Monopoles in 2 + 1-dimensional conformal field theories with global U(1) symmetry, JHEP, 09, 127, (2013) · Zbl 1342.81510 · doi:10.1007/JHEP09(2013)127
[40] E. Dyer, M. Mezei, S.S. Pufu and S. Sachdev, Scaling dimensions of monopole operators in the CP\^{}{Nb-1}theory in 2 + 1 dimensions, JHEP06 (2015) 037 [Erratum ibid.03 (2016) 111] [arXiv:1504.00368] [INSPIRE]. · Zbl 1387.81238
[41] Gracey, JA, Computation of critical exponent η at \(O\)(1/\(N\)_{\(f\)}\^{}{2}) in quantum electrodynamics in arbitrary dimensions, Nucl. Phys., B 414, 614, (1994) · doi:10.1016/0550-3213(94)90257-7
[42] Gracey, JA, Electron mass anomalous dimension at \(O\)(1/\(N\)_{\(f\)}\^{}{2}) in quantum electrodynamics, Phys. Lett., B 317, 415, (1993) · doi:10.1016/0370-2693(93)91017-H
[43] Strouthos, C.; Kogut, JB, Chiral symmetry breaking in three dimensional QED, J. Phys. Conf. Ser., 150, 052247, (2009) · doi:10.1088/1742-6596/150/5/052247
[44] Braun, J.; Gies, H.; Janssen, L.; Roscher, D., Phase structure of many-flavor QED_{3}, Phys. Rev., D 90, 036002, (2014)
[45] S.M. Chester and S.S. Pufu, Anomalous dimensions of scalar operators in QED_{3}, arXiv:1603.05582 [INSPIRE]. · Zbl 1390.81279
[46] Xu, C., Renormalization group studies on four-fermion interaction instabilities on algebraic spin liquids, Phys. Rev., B 78, 054432, (2008) · doi:10.1103/PhysRevB.78.054432
[47] S. Giombi, G. Tarnopolsky and I.R. Klebanov, On C_{\(J\)}and C_{\(T\)}in conformal QED, arXiv:1602.01076 [INSPIRE].
[48] Y. Huh, P. Strack and S. Sachdev, Conserved current correlators of conformal field theories in 2 + 1 dimensions, Phys. Rev.B 88 (2013) 155109 [Erratum ibid.B 90 (2014) 199902] [arXiv:1307.6863] [INSPIRE].
[49] Y. Huh and P. Strack, Stress tensor and current correlators of interacting conformal field theories in 2 + 1 dimensions: fermionic Dirac matter coupled to U(1) gauge field, JHEP01 (2015) 147 [Erratum ibid.03 (2016) 054] [arXiv:1410.1902] [INSPIRE].
[50] Rattazzi, R.; Rychkov, S.; Vichi, A., Bounds in 4D conformal field theories with global symmetry, J. Phys., A 44, 035402, (2011) · Zbl 1206.81116
[51] Hogervorst, M.; Rychkov, S., Radial coordinates for conformal blocks, Phys. Rev., D 87, 106004, (2013)
[52] Chester, SM; Lee, J.; Pufu, SS; Yacoby, R., The N = 8 superconformal bootstrap in three dimensions, JHEP, 09, 143, (2014) · doi:10.1007/JHEP09(2014)143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.