×

Fermion conformal bootstrap in 4d. (English) Zbl 1416.81158

Summary: We apply numerical conformal bootstrap techniques to the four-point function of a Weyl spinor in 4d non-supersymmetric CFTs. We find universal bounds on operator dimensions and OPE coefficients, including bounds on operators in mixed symmetry representations of the Lorentz group, which were inaccessible in previous bootstrap studies. We find discontinuities in some of the bounds on operator dimensions, and we show that they arise due to a generic yet previously unobserved “fake primary” effect, which is related to the existence of poles in conformal blocks. We show that this effect is also responsible for similar discontinuities found in four-fermion bootstrap in 3d, as well as in the mixed-correlator analysis of the 3d Ising CFT. As an important byproduct of our work, we develop a practical technology for numerical approximation of general 4d conformal blocks.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism

Software:

SDPB; CFTs4D

References:

[1] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE]. · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[2] S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE]. · doi:10.1016/0003-4916(73)90446-6
[3] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [INSPIRE].
[4] D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, Rev. Mod. Phys.91 (2019) 15002 [arXiv:1805.04405] [INSPIRE]. · doi:10.1103/RevModPhys.91.015002
[5] V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev.D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].
[6] S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev.D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].
[7] S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. C-minimization and precise critical exponents, J. Stat. Phys.157 (2014) 869 [arXiv:1403.4545] [INSPIRE]. · Zbl 1310.82013
[8] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP06 (2014) 091 [arXiv:1307.6856] [INSPIRE]. · Zbl 1392.81202 · doi:10.1007/JHEP06(2014)091
[9] D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP05(2012) 110 [arXiv:1109.5176] [INSPIRE]. · doi:10.1007/JHEP05(2012)110
[10] S. El-Showk and M.F. Paulos, Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett.111 (2013) 241601 [arXiv:1211.2810] [INSPIRE]. · doi:10.1103/PhysRevLett.111.241601
[11] S. El-Showk and M.F. Paulos, Extremal bootstrapping: go with the flow, JHEP03 (2018) 148 [arXiv:1605.08087] [INSPIRE]. · Zbl 1388.81656 · doi:10.1007/JHEP03(2018)148
[12] D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP03 (2017) 086 [arXiv:1612.08471] [INSPIRE]. · Zbl 1377.81184 · doi:10.1007/JHEP03(2017)086
[13] D. Mazac, Analytic bounds and emergence of AdS2physics from the conformal bootstrap, JHEP04 (2017) 146 [arXiv:1611.10060] [INSPIRE]. · Zbl 1378.81121 · doi:10.1007/JHEP04(2017)146
[14] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D S-matrices, JHEP02 (2019) 162 [arXiv:1803.10233] [INSPIRE].
[15] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part II. Natural bases for the crossing equation, JHEP02 (2019) 163 [arXiv:1811.10646] [INSPIRE].
[16] F. Caracciolo and V.S. Rychkov, Rigorous limits on the interaction strength in quantum field theory, Phys. Rev.D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].
[17] R. Rattazzi, S. Rychkov and A. Vichi, Central charge bounds in 4D conformal field theory, Phys. Rev.D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE]. · Zbl 1206.81116
[18] D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP05 (2011) 017 [arXiv:1009.2087] [INSPIRE]. · Zbl 1296.81067 · doi:10.1007/JHEP05(2011)017
[19] R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys.A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE]. · Zbl 1206.81116
[20] A. Vichi, Improved bounds for CFT’s with global symmetries, JHEP01 (2012) 162 [arXiv:1106.4037] [INSPIRE]. · Zbl 1306.81289 · doi:10.1007/JHEP01(2012)162
[21] F. Caracciolo, A. Castedo Echeverri, B. von Harling and M. Serone, Bounds on OPE coefficients in 4D conformal field theories, JHEP10 (2014) 020 [arXiv:1406.7845] [INSPIRE]. · Zbl 1333.81365 · doi:10.1007/JHEP10(2014)020
[22] H. Iha, H. Makino and H. Suzuki, Upper bound on the mass anomalous dimension in many-flavor gauge theories: a conformal bootstrap approach, PTEP2016 (2016) 053B03 [arXiv:1603.01995] [INSPIRE]. · Zbl 1361.81137 · doi:10.1093/ptep/ptw046
[23] Y. Nakayama, Bootstrap bound for conformal multi-flavor QCD on lattice, JHEP07 (2016) 038 [arXiv:1605.04052] [INSPIRE]. · doi:10.1007/JHEP07(2016)038
[24] D. Poland and A. Stergiou, Exploring the minimal \[4DN=1 \mathcal{N}=1\] SCFT, JHEP12 (2015) 121 [arXiv:1509.06368] [INSPIRE]. · Zbl 1388.81691
[25] L. Iliesiu et al., Bootstrapping 3D fermions, JHEP03 (2016) 120 [arXiv:1508.00012] [INSPIRE]. · doi:10.1007/JHEP03(2016)120
[26] L. Iliesiu et al., Bootstrapping 3D fermions with global symmetries, JHEP01 (2018) 036 [arXiv:1705.03484] [INSPIRE]. · doi:10.1007/JHEP01(2018)036
[27] A. Dymarsky, J. Penedones, E. Trevisani and A. Vichi, Charting the space of 3D CFTs with a continuous global symmetry, JHEP05 (2019) 098 [arXiv:1705.04278] [INSPIRE].
[28] A. Dymarsky et al., The 3d stress-tensor bootstrap, JHEP02 (2018) 164 [arXiv:1708.05718] [INSPIRE]. · Zbl 1387.81313 · doi:10.1007/JHEP02(2018)164
[29] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP11 (2011) 071 [arXiv:1107.3554] [INSPIRE]. · Zbl 1306.81207 · doi:10.1007/JHEP11(2011)071
[30] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal blocks, JHEP11 (2011) 154 [arXiv:1109.6321] [INSPIRE]. · Zbl 1306.81148 · doi:10.1007/JHEP11(2011)154
[31] D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE]. · Zbl 1333.83125 · doi:10.1007/JHEP04(2014)146
[32] A. Castedo Echeverri, E. Elkhidir, D. Karateev and M. Serone, Deconstructing conformal blocks in 4D CFT, JHEP08 (2015) 101 [arXiv:1505.03750] [INSPIRE]. · Zbl 1388.81409 · doi:10.1007/JHEP08(2015)101
[33] J. Penedones, E. Trevisani and M. Yamazaki, Recursion relations for conformal blocks, JHEP09 (2016) 070 [arXiv:1509.00428] [INSPIRE]. · Zbl 1390.81533 · doi:10.1007/JHEP09(2016)070
[34] L. Iliesiu et al., Fermion-scalar conformal blocks, JHEP04 (2016) 074 [arXiv:1511.01497] [INSPIRE]. · Zbl 1388.81051
[35] A. Castedo Echeverri, E. Elkhidir, D. Karateev and M. Serone, Seed conformal blocks in 4D CFT, JHEP02 (2016) 183 [arXiv:1601.05325] [INSPIRE]. · Zbl 1388.81745 · doi:10.1007/JHEP02(2016)183
[36] M.S. Costa, T. Hansen, J. Penedones and E. Trevisani, Projectors and seed conformal blocks for traceless mixed-symmetry tensors, JHEP07 (2016) 018 [arXiv:1603.05551] [INSPIRE]. · Zbl 1388.81798 · doi:10.1007/JHEP07(2016)018
[37] P. Kravchuk and D. Simmons-Duffin, Counting conformal correlators, JHEP02 (2018) 096 [arXiv:1612.08987] [INSPIRE]. · Zbl 1387.81325 · doi:10.1007/JHEP02(2018)096
[38] G.F. Cuomo, D. Karateev and P. Kravchuk, General bootstrap equations in 4D CFTs, JHEP01 (2018) 130 [arXiv:1705.05401] [INSPIRE]. · Zbl 1384.81094 · doi:10.1007/JHEP01(2018)130
[39] D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight shifting operators and conformal blocks, JHEP02 (2018) 081 [arXiv:1706.07813] [INSPIRE]. · Zbl 1387.81323 · doi:10.1007/JHEP02(2018)081
[40] P. Kravchuk, Casimir recursion relations for general conformal blocks, JHEP02 (2018) 011 [arXiv:1709.05347] [INSPIRE]. · Zbl 1387.81324 · doi:10.1007/JHEP02(2018)011
[41] G. Mack and A. Salam, Finite component field representations of the conformal group, Annals Phys.53 (1969) 174 [INSPIRE]. · doi:10.1016/0003-4916(69)90278-4
[42] E. Elkhidir, D. Karateev and M. Serone, General three-point functions in 4D CFT, JHEP01 (2015) 133 [arXiv:1412.1796] [INSPIRE]. · Zbl 1388.81409 · doi:10.1007/JHEP01(2015)133
[43] D. Simmons-Duffin, A Semidefinite program solver for the conformal bootstrap, JHEP06(2015) 174 [arXiv:1502.02033] [INSPIRE]. · doi:10.1007/JHEP06(2015)174
[44] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE]. · Zbl 1097.81734 · doi:10.1016/S0550-3213(01)00013-X
[45] F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE]. · Zbl 1097.81735 · doi:10.1016/j.nuclphysb.2003.11.016
[46] Al.B. Zamolodchikov, Conformal symmetry in two-dimensional space: Recursion representation of conformal block, Theor. Math. Phys.73 (1987) 1088.
[47] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D ising model, JHEP11 (2014) 109 [arXiv:1406.4858] [INSPIRE]. · Zbl 1392.81202 · doi:10.1007/JHEP11(2014)109
[48] Y. Nakayama and T. Ohtsuki, Conformal bootstrap dashing hopes of emergent symmetry, Phys. Rev. Lett.117 (2016) 131601 [arXiv:1602.07295] [INSPIRE]. · doi:10.1103/PhysRevLett.117.131601
[49] W.E. Caswell, Asymptotic behavior of nonabelian gauge theories to two loop order, Phys. Rev. Lett.33 (1974) 244 [INSPIRE]. · doi:10.1103/PhysRevLett.33.244
[50] T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys.B 196 (1982) 189 [INSPIRE]. · doi:10.1016/0550-3213(82)90035-9
[51] T. DeGrand, Lattice tests of beyond standard model dynamics, Rev. Mod. Phys.88 (2016) 015001 [arXiv:1510.05018] [INSPIRE]. · doi:10.1103/RevModPhys.88.015001
[52] F.F. Hansen et al., Phase structure of complete asymptotically free SU(Nc) theories with quarks and scalar quarks, Phys. Rev.D 97 (2018) 065014 [arXiv:1706.06402] [INSPIRE].
[53] S. Weinberg, Minimal fields of canonical dimensionality are free, Phys. Rev.D 86 (2012) 105015 [arXiv:1210.3864] [INSPIRE].
[54] E. Elkhidir and D. Karateev, Scalar-fermion analytic bootstrap in 4D, arXiv:1712.01554 [INSPIRE]. · Zbl 1416.81148
[55] H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys.231 (1994) 311 [hep-th/9307010] [INSPIRE]. · Zbl 0795.53073 · doi:10.1006/aphy.1994.1045
[56] F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE]. · Zbl 1097.81735
[57] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE]. · Zbl 1342.83239 · doi:10.1007/JHEP12(2013)004
[58] Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE]. · doi:10.1007/JHEP11(2013)140
[59] D. Karateev, P. Kravchuk and D. Simmons-Duffin, Harmonic analysis and mean field theory, arXiv:1809.05111 [INSPIRE]. · Zbl 1387.81323
[60] V.K. Dobrev et al., Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys.63 (1977) 1 [INSPIRE]. · Zbl 0407.43010 · doi:10.1007/BFb0009679
[61] S. Caron-Huot, Analyticity in spin in conformal theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE]. · Zbl 1382.81173 · doi:10.1007/JHEP09(2017)078
[62] D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP07 (2018) 085 [arXiv:1711.03816] [INSPIRE]. · Zbl 1395.81246 · doi:10.1007/JHEP07(2018)085
[63] P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP11 (2018) 102 [arXiv:1805.00098] [INSPIRE]. · Zbl 1404.81234 · doi:10.1007/JHEP11(2018)102
[64] S. Giombi, V. Kirilin and E. Skvortsov, Notes on spinning operators in fermionic CFT, JHEP05 (2017) 041 [arXiv:1701.06997] [INSPIRE]. · Zbl 1380.81318 · doi:10.1007/JHEP05(2017)041
[65] G. Mack, All unitary ray representations of the conformal group SU(2, 2) with Positive Energy, Commun. Math. Phys.55 (1977) 1. · Zbl 0352.22012 · doi:10.1007/BF01613145
[66] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising and O(N) models, JHEP08 (2016) 036 [arXiv:1603.04436] [INSPIRE]. · Zbl 1390.81227 · doi:10.1007/JHEP08(2016)036
[67] D. Li, D. Meltzer and A. Stergiou, Bootstrapping mixed correlators in \[4DN=1 \mathcal{N}=1\] SCFTs, JHEP07 (2017) 029 [arXiv:1702.00404] [INSPIRE]. · Zbl 1380.81405 · doi:10.1007/JHEP07(2017)029
[68] A.L. Fitzpatrick et al., Covariant Approaches to Superconformal Blocks, JHEP08 (2014) 129 [arXiv:1402.1167] [INSPIRE]. · doi:10.1007/JHEP08(2014)129
[69] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, U.S.A. (1992). · Zbl 0516.53060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.