×

The 3d stress-tensor bootstrap. (English) Zbl 1387.81313

Summary: We study the conformal bootstrap for 4-point functions of stress tensors in parity-preserving 3d CFTs. To set up the bootstrap equations, we analyze the constraints of conformal symmetry, permutation symmetry, and conservation on the stress-tensor 4-point function and identify a non-redundant set of crossing equations. Studying these equations numerically using semidefinite optimization, we compute bounds on the central charge as a function of the independent coefficient in the stress-tensor 3-point function. With no additional assumptions, these bounds numerically reproduce the conformal collider bounds and give a general lower bound on the central charge. We also study the effect of gaps in the scalar, spin-2, and spin-4 spectra on the central charge bound. We find general upper bounds on these gaps as well as tighter restrictions on the stress-tensor 3-point function coefficients for theories with moderate gaps. When the gap for the leading scalar or spin-2 operator is sufficiently large to exclude large \(N\) theories, we also obtain upper bounds on the central charge, thus finding compact allowed regions. Finally, assuming the known low-lying spectrum and central charge of the critical 3d Ising model, we determine its stress-tensor 3-point function and derive a bound on its leading parity-odd scalar.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics

Software:

CFTs4D; SDPB

References:

[1] S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE].
[2] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [INSPIRE].
[3] G. Mack, Duality in quantum field theory, Nucl. Phys.B 118 (1977) 445 [INSPIRE].
[4] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE]. · Zbl 1329.81324
[5] S. Rychkov, EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions, SpringerBriefs in Physics (2016) [arXiv:1601.05000] [INSPIRE]. · Zbl 1365.81007
[6] D. Simmons-Duffin, The Conformal Bootstrap, arXiv:1602.07982 [INSPIRE]. · Zbl 1359.81165
[7] D. Poland and D. Simmons-Duffin, The conformal bootstrap, Nature Phys.12 (2016) 535.
[8] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev.D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE]. · Zbl 1310.82013
[9] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents, J. Stat. Phys.157 (2014) 869 [arXiv:1403.4545] [INSPIRE]. · Zbl 1310.82013
[10] F. Gliozzi and A. Rago, Critical exponents of the 3d Ising and related models from Conformal Bootstrap, JHEP10 (2014) 042 [arXiv:1403.6003] [INSPIRE].
[11] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP11 (2014) 109 [arXiv:1406.4858] [INSPIRE].
[12] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising and O(N) Models, JHEP08 (2016) 036 [arXiv:1603.04436] [INSPIRE]. · Zbl 1390.81227
[13] D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP03 (2017) 086 [arXiv:1612.08471] [INSPIRE]. · Zbl 1377.81184
[14] R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D Conformal Field Theories with Global Symmetry, J. Phys.A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE]. · Zbl 1206.81116
[15] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP06 (2014) 091 [arXiv:1307.6856] [INSPIRE]. · Zbl 1392.81202
[16] S.M. Chester, S.S. Pufu and R. Yacoby, Bootstrapping O(N) vector models in 4 < d < 6, Phys. Rev.D 91 (2015) 086014 [arXiv:1412.7746] [INSPIRE].
[17] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) Archipelago, JHEP11 (2015) 106 [arXiv:1504.07997] [INSPIRE]. · Zbl 1388.81054
[18] L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Bootstrapping 3D Fermions, JHEP03 (2016) 120 [arXiv:1508.00012] [INSPIRE].
[19] L. Iliesiu, F. Kos, D. Poland, S.S. Pufu and D. Simmons-Duffin, Bootstrapping 3D Fermions with Global Symmetries, JHEP01 (2018) 036 [arXiv:1705.03484] [INSPIRE].
[20] C. Beem, L. Rastelli and B.C. van Rees, \[TheN=4 \mathcal{N}=4\] Superconformal Bootstrap, Phys. Rev. Lett.111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].
[21] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, \[TheN=8 \mathcal{N}=8\] superconformal bootstrap in three dimensions, JHEP09 (2014) 143 [arXiv:1406.4814] [INSPIRE].
[22] C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, \[TheN=2 \mathcal{N}=2\] superconformal bootstrap, JHEP03 (2016) 183 [arXiv:1412.7541] [INSPIRE]. · Zbl 1388.81482
[23] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping the Three-Dimensional Supersymmetric Ising Model, Phys. Rev. Lett.115 (2015) 051601 [arXiv:1502.04124] [INSPIRE].
[24] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with Four Supercharges, JHEP08 (2015) 142 [arXiv:1503.02081] [INSPIRE]. · Zbl 1388.81638
[25] S.M. Chester, S. Giombi, L.V. Iliesiu, I.R. Klebanov, S.S. Pufu and R. Yacoby, Accidental Symmetries and the Conformal Bootstrap, JHEP01 (2016) 110 [arXiv:1507.04424] [INSPIRE]. · Zbl 1388.81382
[26] C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev.D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].
[27] D. Poland and A. Stergiou, Exploring the Minimal \[4DN=1 \mathcal{N}=1\] SCFT, JHEP12 (2015) 121 [arXiv:1509.06368] [INSPIRE]. · Zbl 1388.81691
[28] M. Lemos and P. Liendo, \[BootstrappingN=2 \mathcal{N}=2\] chiral correlators, JHEP01 (2016) 025 [arXiv:1510.03866] [INSPIRE]. · Zbl 1388.81056
[29] S.M. Chester, L.V. Iliesiu, S.S. Pufu and R. Yacoby, Bootstrapping O(N) Vector Models with Four Supercharges in 3 ≤ d ≤ 4, JHEP05 (2016) 103 [arXiv:1511.07552] [INSPIRE]. · Zbl 1388.81206
[30] Y.-H. Lin, S.-H. Shao, D. Simmons-Duffin, Y. Wang and X. Yin, \[N=4 \mathcal{N}=4\] superconformal bootstrap of the K3 CFT, JHEP05 (2017) 126 [arXiv:1511.04065] [INSPIRE]. · Zbl 1380.81339
[31] C. Beem, L. Rastelli and B.C. van Rees, \[MoreN=4 \mathcal{N}=4\] superconformal bootstrap, Phys. Rev.D 96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].
[32] M. Lemos, P. Liendo, C. Meneghelli and V. Mitev, \[BootstrappingN=3 \mathcal{N}=3\] superconformal theories, JHEP04 (2017) 032 [arXiv:1612.01536] [INSPIRE]. · Zbl 1378.81142
[33] D. Li, D. Meltzer and A. Stergiou, Bootstrapping mixed correlators in \[4DN=1 \mathcal{N}=1\] SCFTs, JHEP07 (2017) 029 [arXiv:1702.00404] [INSPIRE]. · Zbl 1380.81405
[34] V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions, Phys. Rev.D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].
[35] F. Caracciolo and V.S. Rychkov, Rigorous Limits on the Interaction Strength in Quantum Field Theory, Phys. Rev.D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].
[36] D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP05 (2011) 017 [arXiv:1009.2087] [INSPIRE]. · Zbl 1296.81067
[37] R. Rattazzi, S. Rychkov and A. Vichi, Central Charge Bounds in 4D Conformal Field Theory, Phys. Rev.D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE]. · Zbl 1206.81116
[38] A. Vichi, Improved bounds for CFT’s with global symmetries, JHEP01 (2012) 162 [arXiv:1106.4037] [INSPIRE]. · Zbl 1306.81289
[39] D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of 4D CFTs, JHEP05 (2012) 110 [arXiv:1109.5176] [INSPIRE].
[40] S. Rychkov, Conformal Bootstrap in Three Dimensions?, arXiv:1111.2115 [INSPIRE]. · Zbl 1365.81007
[41] L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Fermion-Scalar Conformal Blocks, JHEP04 (2016) 074 [arXiv:1511.01497] [INSPIRE]. · Zbl 1388.81051
[42] A. Dymarsky, J. Penedones, E. Trevisani and A. Vichi, Charting the space of 3D CFTs with a continuous global symmetry, arXiv:1705.04278 [INSPIRE].
[43] P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFTd, JHEP07 (2013) 113 [arXiv:1210.4258] [INSPIRE]. · Zbl 1342.81504
[44] D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP03 (2014) 100 [arXiv:1310.5078] [INSPIRE].
[45] F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and Interface CFTs from the Conformal Bootstrap, JHEP05 (2015) 036 [arXiv:1502.07217] [INSPIRE]. · Zbl 1388.81150
[46] M.F. Paulos, S. Rychkov, B.C. van Rees and B. Zan, Conformal Invariance in the Long-Range Ising Model, Nucl. Phys.B 902 (2016) 246 [arXiv:1509.00008] [INSPIRE]. · Zbl 1332.82017
[47] C. Behan, L. Rastelli, S. Rychkov and B. Zan, Long-range critical exponents near the short-range crossover, Phys. Rev. Lett.118 (2017) 241601 [arXiv:1703.03430] [INSPIRE]. · Zbl 1376.82012
[48] C. Behan, L. Rastelli, S. Rychkov and B. Zan, A scaling theory for the long-range to short-range crossover and an infrared duality, J. Phys.A 50 (2017) 354002 [arXiv:1703.05325] [INSPIRE]. · Zbl 1376.82012
[49] D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP05 (2008) 012 [arXiv:0803.1467] [INSPIRE].
[50] A. Buchel, J. Escobedo, R.C. Myers, M.F. Paulos, A. Sinha and M. Smolkin, Holographic GB gravity in arbitrary dimensions, JHEP03 (2010) 111 [arXiv:0911.4257] [INSPIRE]. · Zbl 1271.81120
[51] D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A Proof of the Conformal Collider Bounds, JHEP06 (2016) 111 [arXiv:1603.03771] [INSPIRE]. · Zbl 1388.81048
[52] T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from Causality, JHEP07 (2017) 066 [arXiv:1610.05308] [INSPIRE]. · Zbl 1380.81327
[53] D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal Bootstrap, JHEP06 (2015) 174 [arXiv:1502.02033] [INSPIRE].
[54] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP11 (2011) 071 [arXiv:1107.3554] [INSPIRE]. · Zbl 1306.81207
[55] P. Kravchuk and D. Simmons-Duffin, Counting Conformal Correlators, arXiv:1612.08987 [INSPIRE]. · Zbl 1387.81325
[56] A. Dymarsky, On the four-point function of the stress-energy tensors in a CFT, JHEP10 (2015) 075 [arXiv:1311.4546] [INSPIRE]. · Zbl 1388.81408
[57] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Blocks, JHEP11 (2011) 154 [arXiv:1109.6321] [INSPIRE]. · Zbl 1306.81148
[58] D. Li, D. Meltzer and D. Poland, Conformal Collider Physics from the Lightcone Bootstrap, JHEP02 (2016) 143 [arXiv:1511.08025] [INSPIRE].
[59] V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical Derivation of Vacuum Operator Product Expansion in Euclidean Conformal Quantum Field Theory, Phys. Rev.D 13 (1976) 887 [INSPIRE].
[60] D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight Shifting Operators and Conformal Blocks, arXiv:1706.07813 [INSPIRE]. · Zbl 1387.81323
[61] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE]. · Zbl 1097.81735
[62] J. Penedones, E. Trevisani and M. Yamazaki, Recursion Relations for Conformal Blocks, JHEP09 (2016) 070 [arXiv:1509.00428] [INSPIRE]. · Zbl 1390.81533
[63] A. Zhiboedov, On Conformal Field Theories With Extremal a/c Values, JHEP04 (2014) 038 [arXiv:1304.6075] [INSPIRE].
[64] O. Nachtmann, Positivity constraints for anomalous dimensions, Nucl. Phys.B 63 (1973) 237 [INSPIRE].
[65] Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].
[66] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE]. · Zbl 1342.83239
[67] M.S. Costa, T. Hansen and J. Penedones, Bounds for OPE coefficients on the Regge trajectory, JHEP10 (2017) 197 [arXiv:1707.07689] [INSPIRE]. · Zbl 1383.81197
[68] O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP02 (2016) 093 [arXiv:1512.00161] [INSPIRE]. · Zbl 1388.81744
[69] P.-S. Hsin and N. Seiberg, Level/rank Duality and Chern-Simons-Matter Theories, JHEP09 (2016) 095 [arXiv:1607.07457] [INSPIRE]. · Zbl 1390.81214
[70] O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-matter dualities with SO and USp gauge groups, JHEP02 (2017) 072 [arXiv:1611.07874] [INSPIRE]. · Zbl 1377.58018
[71] E. Elkhidir, D. Karateev and M. Serone, General Three-Point Functions in 4D CFT, JHEP01 (2015) 133 [arXiv:1412.1796] [INSPIRE].
[72] A. Castedo Echeverri, E. Elkhidir, D. Karateev and M. Serone, Deconstructing Conformal Blocks in 4D CFT, JHEP08 (2015) 101 [arXiv:1505.03750] [INSPIRE]. · Zbl 1388.81409
[73] A. Castedo Echeverri, E. Elkhidir, D. Karateev and M. Serone, Seed Conformal Blocks in 4D CFT, JHEP02 (2016) 183 [arXiv:1601.05325] [INSPIRE]. · Zbl 1388.81745
[74] M.S. Costa, T. Hansen, J. Penedones and E. Trevisani, Projectors and seed conformal blocks for traceless mixed-symmetry tensors, JHEP07 (2016) 018 [arXiv:1603.05551] [INSPIRE]. · Zbl 1388.81798
[75] G.F. Cuomo, D. Karateev and P. Kravchuk, General Bootstrap Equations in 4D CFTs, JHEP01 (2018) 130 [arXiv:1705.05401] [INSPIRE]. · Zbl 1384.81094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.