×

The M-theory archipelago. (English) Zbl 1435.81169

Summary: We combine supersymmetric localization results and the numerical conformal bootstrap technique to study the 3d maximally supersymmetric \(( \mathcal{N} = 8)\) CFT on \(N\) coincident M2-branes (the \(\mathrm{U}(N)_k \times U(N)_{ -k}\) ABJM theory at Chern-Simons level \(k = 1\)). In particular, we perform a mixed correlator bootstrap study of the superconformal primaries of the stress tensor multiplet and of the next possible lowest-dimension half-BPS multiplet that is allowed by 3d \(\mathcal{N} = 8\) superconformal symmetry. Of all known 3d \(\mathcal{N} = 8\) SCFTs, the \(k = 1\) ABJM theory is the only one that contains both types of multiplets in its operator spectrum. By imposing the values of the short OPE coefficients that can be computed exactly using supersymmetric localization, we are able to derive precise islands in the space of semi-short OPE coefficients for an infinite number of such coefficients. We find that these islands decrease in size with increasing \(N\). More generally, we also analyze 3d \(\mathcal{N} = 8\) SCFT that contain both aforementioned multiplets in their operator spectra without inputing any additional information that is specific to ABJM theory. For such theories, we compute upper and lower bounds on the semi-short OPE coefficients as well as upper bounds on the scaling dimension of the lowest unprotected scalar operator. These latter bounds are more constraining than the analogous bounds previously derived from a single correlator bootstrap of the stress tensor multiplet. This leads us to conjecture that the \(\mathrm{U}(N)_2 \times \mathrm{U}(N + 1)_{-2}\) ABJ theory, and not the \(k = 1\) ABJM theory, saturates the single correlator bounds.

MSC:

81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81T60 Supersymmetric field theories in quantum mechanics
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
58J28 Eta-invariants, Chern-Simons invariants

Software:

SDPB

References:

[1] Polyakov, AM, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz., 66, 23 (1974)
[2] Ferrara, S.; Grillo, AF; Gatto, R., Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys., 76, 161 (1973)
[3] Mack, G., Duality in quantum field theory, Nucl. Phys., B 118, 445 (1977)
[4] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., Bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031 (2008) · Zbl 1329.81324
[5] S. Rychkov, EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions, SpringerBriefs in Physics (2016) [arXiv:1601.05000] [INSPIRE].
[6] D. Simmons-Duffin, The Conformal Bootstrap, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder, CO, U.S.A., 1-26 June 2015, pp. 1-74 (2017) [DOI] [arXiv:1602.07982] [INSPIRE]. · Zbl 1359.81165
[7] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
[8] S.M. Chester, Weizmann Lectures on the Numerical Conformal Bootstrap, arXiv:1907.05147 [INSPIRE].
[9] J.D. Qualls, Lectures on Conformal Field Theory, arXiv:1511.04074 [INSPIRE]. · Zbl 0179.47703
[10] Kos, F.; Poland, D.; Simmons-Duffin, D., Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP, 11, 109 (2014)
[11] Simmons-Duffin, D., A Semidefinite Program Solver for the Conformal Bootstrap, JHEP, 06, 174 (2015)
[12] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising and O(N) Models, JHEP08 (2016) 036 [arXiv:1603.04436] [INSPIRE]. · Zbl 1390.81227
[13] Kos, F.; Poland, D.; Simmons-Duffin, D.; Vichi, A., Bootstrapping the O(N) Archipelago, JHEP, 11, 106 (2015) · Zbl 1388.81054
[14] J. Rong and N. Su, Bootstrapping minimal \(\mathcal{N} = 1\) superconformal field theory in three dimensions, arXiv:1807.04434 [INSPIRE].
[15] Atanasov, A.; Hillman, A.; Poland, D., Bootstrapping the Minimal 3D SCFT, JHEP, 11, 140 (2018)
[16] Li, Z.; Su, N., 3D CFT Archipelago from Single Correlator Bootstrap, Phys. Lett., B 797, 134920 (2019)
[17] Li, Z.; Su, N., Bootstrapping Mixed Correlators in the Five Dimensional Critical O(N) Models, JHEP, 04, 098 (2017) · Zbl 1378.81120
[18] Kousvos, SR; Stergiou, A., Bootstrapping Mixed Correlators in Three-Dimensional Cubic Theories, SciPost Phys., 6, 035 (2019)
[19] Poland, D.; Simmons-Duffin, D.; Vichi, A., Carving Out the Space of 4D CFTs, JHEP, 05, 110 (2012)
[20] Bobev, N.; El-Showk, S.; Mazac, D.; Paulos, MF, Bootstrapping SCFTs with Four Supercharges, JHEP, 08, 142 (2015) · Zbl 1388.81638
[21] Baggio, M.; Bobev, N.; Chester, SM; Lauria, E.; Pufu, SS, Decoding a Three-Dimensional Conformal Manifold, JHEP, 02, 062 (2018) · Zbl 1387.81304
[22] Chester, SM; Iliesiu, LV; Pufu, SS; Yacoby, R., Bootstrapping O(N) Vector Models with Four Supercharges in 3 ≤ d ≤ 4, JHEP, 05, 103 (2016) · Zbl 1388.81206
[23] M. Berkooz, R. Yacoby and A. Zait, Bounds on \(\mathcal{N} = 1\) superconformal theories with global symmetries, JHEP08 (2014) 008 [Erratum ibid.01 (2015) 132] [arXiv:1402.6068] [INSPIRE]. · Zbl 1333.81361
[24] Li, D.; Meltzer, D.; Stergiou, A., Bootstrapping mixed correlators in 4D \(\mathcal{N} = 1\) SCFTs, JHEP, 07, 029 (2017) · Zbl 1380.81405
[25] Chang, C-M; Lin, Y-H, Carving Out the End of the World or (Superconformal Bootstrap in Six Dimensions), JHEP, 08, 128 (2017) · Zbl 1381.83122
[26] Chang, C-M; Fluder, M.; Lin, Y-H; Wang, Y., Spheres, Charges, Instantons and Bootstrap: A Five-Dimensional Odyssey, JHEP, 03, 123 (2018) · Zbl 1388.81740
[27] C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev.D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE]. · Zbl 1388.81482
[28] Chester, SM; Giombi, S.; Iliesiu, LV; Klebanov, IR; Pufu, SS; Yacoby, R., Accidental Symmetries and the Conformal Bootstrap, JHEP, 01, 110 (2016) · Zbl 1388.81382
[29] Beem, C.; Lemos, M.; Liendo, P.; Rastelli, L.; van Rees, BC, The \(\mathcal{N} = 2\) superconformal bootstrap, JHEP, 03, 183 (2016) · Zbl 1388.81482
[30] Lemos, M.; Liendo, P., Bootstrapping \(\mathcal{N} = 2\) chiral correlators, JHEP, 01, 025 (2016) · Zbl 1388.81056
[31] Cornagliotto, M.; Lemos, M.; Liendo, P., Bootstrapping the (A_1, A_2) Argyres-Douglas theory, JHEP, 03, 033 (2018)
[32] Liendo, P.; Meneghelli, C.; Mitev, V., Bootstrapping the half-BPS line defect, JHEP, 10, 077 (2018) · Zbl 1402.81247
[33] A. Gimenez-Grau and P. Liendo, Bootstrapping line defects in \(\mathcal{N} = 2\) theories, arXiv:1907.04345 [INSPIRE]. · Zbl 1435.81218
[34] Beem, C.; Lemos, M.; Liendo, P.; Peelaers, W.; Rastelli, L.; van Rees, BC, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys., 336, 1359 (2015) · Zbl 1320.81076
[35] C. Beem, L. Rastelli and B.C. van Rees, The \(\mathcal{N} = 4\) Superconformal Bootstrap, Phys. Rev. Lett.111 (2013) 071601 [arXiv:1304.1803] [INSPIRE]. · Zbl 1388.81482
[36] C. Beem, L. Rastelli and B.C. van Rees, More \(\mathcal{N} = 4\) superconformal bootstrap, Phys. Rev.D 96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].
[37] Lemos, M.; Liendo, P.; Meneghelli, C.; Mitev, V., Bootstrapping \(\mathcal{N} = 3\) superconformal theories, JHEP, 04, 032 (2017) · Zbl 1378.81142
[38] Chester, SM; Lee, J.; Pufu, SS; Yacoby, R., Exact Correlators of BPS Operators from the 3d Superconformal Bootstrap, JHEP, 03, 130 (2015) · Zbl 1388.81711
[39] Chester, SM; Lee, J.; Pufu, SS; Yacoby, R., The \(\mathcal{N} = 8\) superconformal bootstrap in three dimensions, JHEP, 09, 143 (2014)
[40] Dedushenko, M.; Pufu, SS; Yacoby, R., A one-dimensional theory for Higgs branch operators, JHEP, 03, 138 (2018) · Zbl 1388.81803
[41] Van Raamsdonk, M., Comments on the Bagger-Lambert theory and multiple M2-branes, JHEP, 05, 105 (2008)
[42] Bandres, MA; Lipstein, AE; Schwarz, JH, \( \mathcal{N} = 8\) Superconformal Chern-Simons Theories, JHEP, 05, 025 (2008)
[43] Bagger, J.; Lambert, N., Comments on multiple M2-branes, JHEP, 02, 105 (2008)
[44] J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev.D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].
[45] J. Bagger and N. Lambert, Modeling Multiple M2’s, Phys. Rev.D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].
[46] Gustavsson, A., Algebraic structures on parallel M2-branes, Nucl. Phys., B 811, 66 (2009) · Zbl 1194.81205
[47] Aharony, O.; Bergman, O.; Jafferis, DL; Maldacena, J., \( \mathcal{N} = 6\) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP, 10, 091 (2008) · Zbl 1245.81130
[48] Bashkirov, D.; Kapustin, A., Dualities between \(\mathcal{N} = 8\) superconformal field theories in three dimensions, JHEP, 05, 074 (2011) · Zbl 1296.81114
[49] Aharony, O.; Bergman, O.; Jafferis, DL, Fractional M2-branes, JHEP, 11, 043 (2008)
[50] Agmon, NB; Chester, SM; Pufu, SS, A new duality between \(\mathcal{N} = 8\) superconformal field theories in three dimensions, JHEP, 06, 005 (2018) · Zbl 1395.81257
[51] Lambert, N.; Papageorgakis, C., Relating U(N) × U(N) to SU(N) × SU(N) Chern-Simons Membrane theories, JHEP, 04, 104 (2010) · Zbl 1272.81158
[52] D. Bashkirov, BLG theories at low values of Chern-Simons coupling, arXiv:1211.4887 [INSPIRE].
[53] D. Gang, E. Koh, K. Lee and J. Park, ABCD of 3d \(\mathcal{N} = 8\) and 4 Superconformal Field Theories, arXiv:1108.3647 [INSPIRE].
[54] Closset, C.; Dumitrescu, TT; Festuccia, G.; Komargodski, Z., Supersymmetric Field Theories on Three-Manifolds, JHEP, 05, 017 (2013) · Zbl 1342.81569
[55] Y. Imamura and D. Yokoyama, \( \mathcal{N} = 2\) supersymmetric theories on squashed three-sphere, Phys. Rev.D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].
[56] Agmon, NB; Chester, SM; Pufu, SS, Solving M-theory with the Conformal Bootstrap, JHEP, 06, 159 (2018) · Zbl 1395.81195
[57] Kapustin, A.; Willett, B.; Yaakov, I., Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP, 03, 089 (2010) · Zbl 1271.81110
[58] M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech.1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE]. · Zbl 1456.81440
[59] Nosaka, T., Instanton effects in ABJM theory with general R-charge assignments, JHEP, 03, 059 (2016) · Zbl 1388.81874
[60] Poland, D.; Simmons-Duffin, D., Bounds on 4D Conformal and Superconformal Field Theories, JHEP, 05, 017 (2011) · Zbl 1296.81067
[61] El-Showk, S.; Paulos, MF, Bootstrapping Conformal Field Theories with the Extremal Functional Method, Phys. Rev. Lett., 111, 241601 (2013)
[62] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents, J. Stat. Phys.157 (2014) 869 [arXiv:1403.4545] [INSPIRE]. · Zbl 1310.82013
[63] Zhou, X., On Superconformal Four-Point Mellin Amplitudes in Dimension d > 2, JHEP, 08, 187 (2018) · Zbl 1396.81185
[64] Chester, SM, AdS_4/CFT_3for unprotected operators, JHEP, 07, 030 (2018) · Zbl 1395.81208
[65] Nirschl, M.; Osborn, H., Superconformal Ward identities and their solution, Nucl. Phys., B 711, 409 (2005) · Zbl 1109.81350
[66] Hogervorst, M.; Rychkov, S., Radial Coordinates for Conformal Blocks, Phys. Rev., D 87, 106004 (2013)
[67] Dolan, FA; Gallot, L.; Sokatchev, E., On four-point functions of 1/2-BPS operators in general dimensions, JHEP, 09, 056 (2004)
[68] F.A. Dolan, On Superconformal Characters and Partition Functions in Three Dimensions, J. Math. Phys.51 (2010) 022301 [arXiv:0811.2740] [INSPIRE]. · Zbl 1309.81153
[69] Maldacena, J.; Zhiboedov, A., Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys., A 46, 214011 (2013) · Zbl 1339.81089
[70] Ferrara, S.; Sokatchev, E., Universal properties of superconformal OPEs for 1/2 BPS operators in 3 ≤ d ≤ 6, New J. Phys., 4, 2 (2002) · Zbl 0992.81072
[71] Osborn, H.; Petkou, AC, Implications of conformal invariance in field theories for general dimensions, Annals Phys., 231, 311 (1994) · Zbl 0795.53073
[72] Beem, C.; Peelaers, W.; Rastelli, L., Deformation quantization and superconformal symmetry in three dimensions, Commun. Math. Phys., 354, 345 (2017) · Zbl 1375.81227
[73] Dedushenko, M.; Fan, Y.; Pufu, SS; Yacoby, R., Coulomb Branch Operators and Mirror Symmetry in Three Dimensions, JHEP, 04, 037 (2018) · Zbl 1390.81502
[74] Dedushenko, M.; Fan, Y.; Pufu, SS; Yacoby, R., Coulomb Branch Quantization and Abelianized Monopole Bubbling, JHEP, 10, 179 (2019) · Zbl 1427.81165
[75] Chester, SM; Pufu, SS; Yin, X., The M-theory S-matrix From ABJM: Beyond 11D Supergravity, JHEP, 08, 115 (2018) · Zbl 1396.81171
[76] D.J. Binder, S.M. Chester and S.S. Pufu, Absence of D^4R^4in M-theory From ABJM, arXiv:1808.10554 [INSPIRE]. · Zbl 1436.83092
[77] Binder, DJ; Chester, SM; Pufu, SS, AdS_4/CFT_3from weak to strong string coupling, JHEP, 01, 034 (2020) · Zbl 1434.81096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.