×

Finite element formulations for beam-to-solid interaction – from embedded fibers towards contact. (English) Zbl 1504.74075

Aldakheel, Fadi (ed.) et al., Current trends and open problems in computational mechanics. Cham: Springer. 425-434 (2022).
Summary: Contact and related phenomena, such as friction, wear or elastohydrodynamic lubrication, remain as one of the most challenging problem classes in nonlinear solid and structural mechanics. In the context of their computational treatment with finite element methods (FEM) or isogeometric analysis (IGA), the inherent non-smoothness of contact conditions, the design of robust discretization approaches as well as the implementation of efficient solution schemes seem to provide a never ending source of hard nuts to crack. This is particularly true for the case of beam-to-solid interaction with its mixed-dimensional 1D-3D contact models. Therefore, this contribution gives an overview of current steps being taken, starting from state-of-the-art beam-to-beam (1D) and solid-to-solid (3D) contact algorithms, towards a truly general 1D-3D beam-to-solid contact formulation.
For the entire collection see [Zbl 1487.74005].

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S22 Isogeometric methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74M15 Contact in solid mechanics

Software:

MeshPy

References:

[1] Wriggers, P. (2006). Computational contact mechanics. Berlin, Heidelberg: Springer. · Zbl 1104.74002 · doi:10.1007/978-3-540-32609-0
[2] Popp, A., & Wriggers, P. (eds.) (2018). contact modeling for solids and particles CISM international centre for mechanical sciences (vol. 585). Springer International Publishing.
[3] Simo, J. C., Wriggers, P., & Taylor, R. L. (1985). A perturbed Lagrangian formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 50, 163-180. August. · Zbl 0552.73097 · doi:10.1016/0045-7825(85)90088-X
[4] Wriggers, P., Vu Van, T., & Stein, E. (1990). Finite element formulation of large deformation impact-contact problems with friction. Computers & Structures, 37, 319-331. · Zbl 0727.73080
[5] Fischer, K. A., & Wriggers, P. (2005). Frictionless 2D contact formulations for finite deformations based on the mortar method. Computational Mechanics, 36, 226-244. August. · Zbl 1102.74033 · doi:10.1007/s00466-005-0660-y
[6] Popp, A., Gee, M. W., & Wall, W. A. (2009). A finite deformation mortar contact formulation using a primal-dual active set strategy. International Journal for Numerical Methods in Engineering, 79, 1354-1391. · Zbl 1176.74133 · doi:10.1002/nme.2614
[7] Popp, A., Gitterle, M., Gee, M. W., & Wall, W. A. (2010). A dual mortar approach for 3D finite deformation contact with consistent linearization. International Journal for Numerical Methods in Engineering, 83, 1428-1465. · Zbl 1202.74183 · doi:10.1002/nme.2866
[8] Popp, A., Wohlmuth, B. I., Gee, M. W., & Wall, W. A. (2012). Dual quadratic mortar finite element methods for 3d finite deformation contact. SIAM Journal on Scientific Computing, 34, B421-B446. · Zbl 1250.74020 · doi:10.1137/110848190
[9] Popp, A., & Wall, W. A. (2014). Dual mortar methods for computational contact mechanics - overview and recent developments. GAMM-Mitteilungen, 37, 66-84. · Zbl 1308.74119 · doi:10.1002/gamm.201410004
[10] Farah, P., Popp, A., & Wall, W. A. (2015). Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Computational Mechanics, 55, 209-228. · Zbl 1311.74120
[11] Zavarise, G., & Wriggers, P. (1999). A superlinear convergent augmented Lagrangian procedure for contact problems. Engineering Computations, 16, 88-119. · Zbl 0947.74079 · doi:10.1108/02644409910251292
[12] Wriggers, P., & Zavarise, G. (2008). A formulation for frictionless contact problems using a weak form introduced by Nitsche. Computational Mechanics, 41, 407-420. · Zbl 1162.74419 · doi:10.1007/s00466-007-0196-4
[13] Temizer, I., Wriggers, P., & Hughes, T. J. R. (2011). Contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 200, 1100-1112. · Zbl 1225.74126 · doi:10.1016/j.cma.2010.11.020
[14] De Lorenzis, L., Wriggers, P., & Hughes, T. J. R. (2014). Isogeometric contact: a review. GAMM-Mitteilungen, 37, 85-123. · Zbl 1308.74114
[15] Seitz, A., Farah, P., Kremheller, J., Wohlmuth, B. I., Wall, W. A., & Popp, Alexander. (2016). Isogeometric dual mortar methods for computational contact mechanics. Computer Methods in Applied Mechanics and Engineering, 301, 259-280. · Zbl 1425.74490 · doi:10.1016/j.cma.2015.12.018
[16] Wunderlich, L., Seitz, A., Deniz Alaydin, M., Wohlmuth, B., & Popp, A. (2019). Biorthogonal splines for optimal weak patch-coupling in isogeometric analysis with applications to finite deformation elasticity. Computer Methods in Applied Mechanics and Engineering, 346, 197-215. · Zbl 1440.74451
[17] Wriggers, P., & Scherf, O. (1995). An adaptive finite element algorithm for contact problems in plasticity. Computational Mechanics, 17, 88-97. · Zbl 0840.73067 · doi:10.1007/BF00356481
[18] Wriggers, P., Krstulovic-Opara, L., & Korelc, J. (2001). Smooth C1-interpolations for two-dimensional frictional contact problems. International Journal for Numerical Methods in Engineering, 51, 1469-1495. · Zbl 1065.74621 · doi:10.1002/nme.227
[19] Wriggers, P., Schröder, J., & Schwarz, A. (2013). A finite element method for contact using a third medium. Computational Mechanics, 52, 837-847. · Zbl 1311.74130 · doi:10.1007/s00466-013-0848-5
[20] Wriggers, P., Rust, W. T., & Reddy, B. D. (2016). A virtual element method for contact. Computational Mechanics, 58, 1039-1050. · Zbl 1398.74420 · doi:10.1007/s00466-016-1331-x
[21] Wriggers, P., & Zavarise, G. (1997). On contact between three-dimensional beams undergoing large deflections. Communications in Numerical Methods in Engineering, 13, 429-438. · Zbl 0878.73063 · doi:10.1002/(SICI)1099-0887(199706)13:6<429::AID-CNM70>3.0.CO;2-X
[22] Zavarise, G., & Wriggers, P. (2000). Contact with friction between beams in 3-D space. International Journal for Numerical Methods in Engineering, 49, 977-1006. · Zbl 0993.74045 · doi:10.1002/1097-0207(20001120)49:8<977::AID-NME986>3.0.CO;2-C
[23] Litewka, P., & Wriggers, P. (2002). Frictional contact between 3D beams. Computational Mechanics, 28, 26-39. · Zbl 1115.74351 · doi:10.1007/s004660100266
[24] Gay Neto, A., Pimenta, P. M., & Wriggers, P. (2015). Self-contact modeling on beams experiencing loop formation. Computational Mechanics, 55, 193-208. · Zbl 1311.74088
[25] Meier, C., Popp, A., & Wall, W. A. (2016). A finite element approach for the line-to-line contact interaction of thin beams with arbitrary orientation. Computer Methods in Applied Mechanics and Engineering, 308, 377-413. · Zbl 1439.74228 · doi:10.1016/j.cma.2016.05.012
[26] Meier, C., Wall, W. A., & Popp, A. (2017). A unified approach for beam-to-beam contact. Computer Methods in Applied Mechanics and Engineering, 315, 972-1010. · Zbl 1439.74160 · doi:10.1016/j.cma.2016.11.028
[27] Ninic, J., Stascheit, J., & Meschke, G. (2014). Beam-solid contact formulation for finite element analysis of pile-soil interaction with arbitrary discretization. International Journal for Numerical and Analytical Methods in Geomechanics, 38, 1453-1476. · doi:10.1002/nag.2262
[28] Konyukhov, A., & Schweizerhof, K. (2015). On some aspects for contact with rigid surfaces: Surface-to-rigid surface and curves-to-rigid surface algorithms. Computer Methods in Applied Mechanics and Engineering, 283, 74-105. · Zbl 1423.74668 · doi:10.1016/j.cma.2014.08.013
[29] Steinbrecher, I., Humer, A., & Vu-Quoc, L. (2017). On the numerical modeling of sliding beams: A comparison of different approaches. Journal of Sound and Vibration, 408, 270-290. · doi:10.1016/j.jsv.2017.07.010
[30] Humer, A., Steinbrecher, I., & Vu-Quoc, L. (2020). General sliding-beam formulation: A non-material description for analysis of sliding structures and axially moving beams. Journal of Sound and Vibration, 480, 115341.
[31] Steinbrecher, I., Mayr, M., Grill, M. J., Kremheller, J., Meier, C., & Popp, A. (2020). A mortar-type finite element approach for embedding 1D beams into 3D solid volumes. Computational Mechanics, 66, 1377-1398. · Zbl 1465.74167 · doi:10.1007/s00466-020-01907-0
[32] Meier, C., Popp, A., & Wall, W. A. (2019). Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory versus Simo-Reissner theory. Archives of Computational Methods in Engineering, 26, 163-243. · doi:10.1007/s11831-017-9232-5
[33] Wohlmuth, B. I. (2000). A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM Journal on Numerical Analysis, 38, 989-1012. · Zbl 0974.65105 · doi:10.1137/S0036142999350929
[34] Puso, M. A. (2004). A 3D mortar method for solid mechanics. International Journal for Numerical Methods in Engineering, 59, 315-336. · Zbl 1047.74065 · doi:10.1002/nme.865
[35] BaciWebsite (2021) BACI: A comprehensive multi-physics simulation framework. https://baci.pages.gitlab.lrz.de/website
[36] Steinbrecher, I., & Popp, A. (2021) MeshPy—A general purpose 3D beam finite element input generator. https://compsim.gitlab.io/codes/meshpy
[37] Bischoff, M., & Ramm, E. (1997). Shear deformable shell elements for large strains and rotations. International Journal for Numerical Methods in Engineering, 40, 4427-4449. · Zbl 0892.73054 · doi:10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO;2-9
[38] Vu-Quoc, L., & Tan, X. G. (2003). Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Computer Methods in Applied Mechanics and Engineering, 192, 975-1016. · Zbl 1091.74524
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.