×

A superlinear convergent augmented Lagrangian procedure for contact problems. (English) Zbl 0947.74079

Summary: The numerical solution of contact problems via the penalty method yields approximate satisfaction of contact constraints. The solution can be improved using augmentation schemes. However, their efficiency is strongly dependent on the value of the penalty parameter and usually results in a poor rate of convergence to the exact solution. In this paper, we propose a new method to perform the augmentations. It is based on estimated values of the augmented Lagrangians. At each augmentation the converged state is used to extract some data. Such information updates a database used for the Lagrangian estimation. The prediction is primarily based on the evolution of the constraint violation with respect to the evolution of the contact forces. The proposed method is characterised by a noticeable efficiency in detecting nearly exact contact forces, and by superlinear convergence for the subsequent minimisation of the residual of constraints. Remarkably, the method is relatively insensitive to the penalty parameter. This allows a solution which fulfils the constraints very rapidly, even when using penalty values close to zero.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74M15 Contact in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] DOI: 10.1016/0045-7825(91)90022-X · Zbl 0825.76353 · doi:10.1016/0045-7825(91)90022-X
[2] Fourment, L., Mocellin, K. and Chenot, J.L. (1997, ”An implicit contact algorithmm for the 3D simulation of the forging process”,Proc. COMPLAS V, Fifth Int. Conf. on Computational Plasticity, Vol. I, pp. 873-7, Barcelona, Spain.
[3] Martins, J.A.C. and Oden, J.T. (1986, ”Models and computational methods for dynamic friction phenomena”,Comp. Meth. Appl. Mech. Engng, Vol. 52, pp. 527-634. · Zbl 0567.73122
[4] DOI: 10.1002/cnm.1630030620 · Zbl 0623.73108 · doi:10.1002/cnm.1630030620
[5] DOI: 10.1002/nme.1620350609 · Zbl 0768.73100 · doi:10.1002/nme.1620350609
[6] DOI: 10.1016/0045-7825(92)90123-2 · Zbl 0764.73089 · doi:10.1016/0045-7825(92)90123-2
[7] Simo, J.C. and Laursen, T.A. (1992, ”An augmented Lagrangian treatment of contact problems involving friction”,Computer & Structures, Vol. 37, pp. 319-31. · Zbl 0755.73085 · doi:10.1016/0045-7949(92)90540-G
[8] DOI: 10.1016/0045-7825(85)90070-2 · Zbl 0535.73025 · doi:10.1016/0045-7825(85)90070-2
[9] DOI: 10.1016/0045-7825(92)90170-O · Zbl 0764.73088 · doi:10.1016/0045-7825(92)90170-O
[10] DOI: 10.1016/0045-7825(85)90088-X · Zbl 0552.73097 · doi:10.1016/0045-7825(85)90088-X
[11] Willner, K. and Gaul, L. (1997, ”Contact description by FEM based on interface physics”,Proc. COMPLAS V, Fifth Int. Conf. on Computational Plasticity, Vol. I, Barcelona, Spain, pp. 884-91.
[12] DOI: 10.1002/cnm.1630010503 · Zbl 0582.73110 · doi:10.1002/cnm.1630010503
[13] DOI: 10.1002/cnm.1640091005 · Zbl 0788.73077 · doi:10.1002/cnm.1640091005
[14] Zavarise, G., Schrefler, B.A. and Wriggers, P. (1992b, ”Consistent formulation for thermomechanical contact based on microscopic interface laws”,Proc. COMPLAS III, Third Int. Conf. on Computational Plasticity, Vol. I, Barcelona, Spain, pp. 349-60. · Zbl 0825.73657
[15] Zavarise, G. and Taylor, R.L. (1997, ”A force control method for contact problems with large initial penetrations”,Proc. COMPLAS V, Fifth Int. Conf. on Computational Plasticity, Vol. I, Barcelona, Spain, pp. 280-6.
[16] DOI: 10.1002/nme.1620381706 · Zbl 0845.73066 · doi:10.1002/nme.1620381706
[17] DOI: 10.1002/nme.1620350409 · Zbl 0775.73305 · doi:10.1002/nme.1620350409
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.