×

On some aspects for contact with rigid surfaces: surface-to-rigid surface and curves-to-rigid surface algorithms. (English) Zbl 1423.74668

Summary: Special algorithms allowing a simplified description of contact between deformable body and rigid surfaces are developed based on the geometrically exact covariant description of contact. A special attention is given to various geometric combinations where the contact can be represented as (a) contact between surfaces and (b) contact between a curve and a surface. For contact between surfaces, leading to the Segment-To-Analytical Surface (STAS) approach, two algorithms can be distinguished based on the selection of a coordinate system for the Closest Point Projection (CPP) procedure: (a) Rigid Surface is a “Slave” surface and (b) Rigid Surface is a “Master” surface. A special combination of both contact kinematics for the surface-to-surface and for the curve-to-curve approaches is employed for the contact between a curve and a surface leading to the Curve-To-Rigid Surface (CTRS) approach. The last algorithm is verified with the well known Euler formula for the rope-cylinder interaction as well as with a new derived generalization into a 3D spiral rope on a cylinder. The developed algorithms can be straightforwardly implemented within an iso-geometric approach as well as within the conventional finite elements where rigid surfaces are given by CAD patches. Any type of elements can be employed for the contacting deformable surface/curve because the algorithms are formulated in a covariant form.

MSC:

74M15 Contact in solid mechanics
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Kikuchi, N.; Oden, J. T., Contact problems in elasticity: A study of variational inequalities and finite element methods, (1988), SIAM · Zbl 0685.73002
[2] Wriggers, P.; Simo, J. C., A note on tangent stiffness for fully nonlinear contact problems, Commun. Appl. Numer. Methods, 1, 199-203, (1985) · Zbl 0582.73110
[3] Laursen, T. A.; Simo, J. C., A continuum-based finite element formulation for the implicit solution of multibody large deformation frictional contact problems, Int. J. Numer. Methods Eng., 35, 3451-3485, (1993) · Zbl 0833.73057
[4] Wriggers, P., Computational contact mechanics, (2002), John Wiley and Sons
[5] Laursen, T. A., Computational contact and impact mechanics, (Fundamentals of modeling interfacial phenomena in nonlinear finite element analysis, (2002), Springer Berlin; Heidelberg; New York) · Zbl 0996.74003
[6] Schweizerhof, K.; Hallquist, J. Q., Efficiency refinements of contact strategies and algorithms in explicit finite element programming, (Owen, D. R.J.; Onate, E., Computational Plasticity, (1992), Pineridge Press), 457-482
[7] Heege, A.; Alart, P., A frictional contact element for strongly curved contact problems, Int. J. Numer. Methods Eng., 39, 165-184, (1996) · Zbl 0842.73066
[8] Pietrzak, G.; Curnier, A., Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment, Comput. Methods Appl. Mech. Engrg., 177, 351-381, (1999) · Zbl 0991.74047
[9] Padmanabhan, V.; Laursen, T. A., A framework for development of surface smoothing procedures in large deformation frictional contact analysis, Finite Elem. Anal. Des., 37, 173-198, (2001) · Zbl 0998.74053
[10] Puso, M. A.; Laursen, T. A., A 3d contact smoothing method using Gregory patches, Int. J. Numerical Methods Eng., 54, 1161-1194, (2002) · Zbl 1098.74711
[11] Krstulovic-Opara, L.; Wriggers, P.; Korelc, J., A C1-continuous formulation for 3d finite deformation frictional contact, Comput. Mech., 29, 27-42, (2002) · Zbl 1076.74555
[12] Stadler, M.; Holzapfel, G. A.; Korelc, J., Cn continuous modeling of smooth contact surfaces using nurbs and application to 2d problems, Int. J. Numerical Methods Eng., 57, 2177-2203, (2003) · Zbl 1062.74628
[13] McDevitt, T. W.; Laursen, T. A., A mortar-finite element formulation for frictional contact problems, Int. J. Numerical Methods Eng., 48, 1525-1547, (2000) · Zbl 0972.74067
[14] Puso, M. A.; Laursen, T. A., A mortar segment-to-segment contact method for large deformation solid mechanics, Comput. Methods Appl. Mech. Engrg., 193, 601-629, (2004) · Zbl 1060.74636
[15] Puso, M. A.; Laursen, T. A., A mortar segment-to-segment frictional contact method for large deformations, Comput. Methods Appl. Mech. Engrg., 193, 4891-4913, (2004) · Zbl 1112.74535
[16] Fischer, K. A.; Wriggers, P., Mortar based frictional contact formulation for higher order interpolations using the moving friction cone, Comput. Methods Appl. Mech. Engrg., 195, 5020-5036, (2006) · Zbl 1118.74047
[17] Zavarise, G.; Wriggers, P., A segment-to-segment contact strategy, Math. Comput. Modelling, 28, 497-515, (1998) · Zbl 1002.74564
[18] Harnau, M.; Konyukhov, A.; Schweizerhof, K., Algorithmic aspects in large deformation contact analysis using ‘solid-shell’ elements, Comput. Struct., 83, 1804-1823, (2005)
[19] Wohlmuth, B. I., A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38, 989-1012, (2000) · Zbl 0974.65105
[20] Popp, A.; Gitterle, M.; Gee, M. W.; Wall, W. A., A dual mortar approach for 3d finite deformation contact with consistent linearization, Int. J. Numerical Methods Eng., 83, 1428-1465, (2010) · Zbl 1202.74183
[21] Hesch, Ch.; Betsch, P., A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems, Int. J. Numerical Methods Eng., 77, 1468-1500, (2009) · Zbl 1156.74378
[22] Paszelt, I.; Szabo, B. A.; Szabo, T., Solution of contact problem using the \(h p\)-version of the finite element methods, Comput. Methods Appl. Mech. Engrg., 38, 49-69, (1999) · Zbl 0959.74069
[23] Konyukhov, A.; Schweizerhof, K., Incorporation of contact for high-order finite elements in covariant form, Comput. Methods Appl. Mech. Engrg., 198, 1213-1223, (2009), HOFEM07 - International Workshop on High-Order Finite Element Methods, 2007 · Zbl 1157.65490
[24] Franke, D.; Duester, A.; Nuebel, V.; Rank, E., A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2d Hertzian contact problem, Comput. Mech., 45, 513-522, (2010) · Zbl 1398.74330
[25] Temizer, I.; Wriggers, P.; Hughes, T. J.R., Contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 200, 1100-1112, (2011) · Zbl 1225.74126
[26] Temizer, I.; Wriggers, P.; Hughes, T. J.R., Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 209-212, 115-128, (2012) · Zbl 1243.74130
[27] Matzen, M. E.; Cichosz, T.; Bischoff, M., A point to segment contact formulation for isogeometric, NURBS based finite elements, Comput. Methods Appl. Mech. Engrg., 255, 27-39, (2013) · Zbl 1297.74084
[28] Souza de Cursi, J. E., Stress unilateral analysis of mooring cables, Int. J. Numerical Methods Eng., 34, 279-302, (1992) · Zbl 0821.73061
[29] Maker, B. N.; Laursen, T. A., A finite element formulation for rod-continuum interactions: the one-dimensional slideline, Int. J. Numerical Methods Eng., 37, 1-18, (1994) · Zbl 0795.73075
[30] Wriggers, P.; Zavarise, G., On contact between three-dimensional beams undergoing large deflection, Commun. Numer. Methods Eng., 13, 429-438, (1997) · Zbl 0878.73063
[31] Zavarise, G.; Wriggers, P., Contact with friction between beams in 3-D space, Int. J. Numerical Methods Eng., 49, 977-1006, (2000) · Zbl 0993.74045
[32] Litewka, P.; Wriggers, P., Contact between 3d beams with rectangular cross-sections, Int. J. Numerical Methods Eng., 53, 2019-2042, (2002) · Zbl 1169.74617
[33] Litewka, P., Frictional contact between 3D beams, Comput. Mech., 28, 26-39, (2002) · Zbl 1115.74351
[34] Litewka, P., Hermite polynomial smoothing in beam-to-beam frictional contact, Comput. Mech., 40, 815-826, (2007) · Zbl 1165.74037
[35] Litewka, P., Smooth frictional contact between beams in 3D, (Nackenhorst, U.; Wriggers, P., IUTAM Symposium on Computational Contact Mechanics, (2007), IUTAM Bookseries, Springer), 157-176 · Zbl 1208.74101
[36] Konyukhov, A.; Schweizerhof, K., Geometrically exact covariant approach for contact between curves, Comput. Methods Appl. Mech. Engrg., 199, 2510-2531, (2010) · Zbl 1231.74325
[37] Konyukhov, A.; Schweizerhof, K., Geometrically exact theory for contact interactions of 1D manifolds. algorithmic implementation with various finite element models, Comput. Methods Appl. Mech. Engrg., 205-208, 130-138, (2012) · Zbl 1239.74069
[38] Durville, D., Contact-friction modeling within elastic beam assemblies: an application to knot tightening, Comput. Mech., 49, 687-707, (2012) · Zbl 1312.74019
[39] Litewka, P., Enhanced multiple-point beam-to-beam frictionless contact finite element, Comput. Mech., 58, 1365-1380, (2013) · Zbl 1398.74359
[40] Konyukhov, A.; Schweizerhof, K., Covariant description for frictional contact problems, Comput. Mech., 35, 190-213, (2005) · Zbl 1143.74345
[41] Konyukhov, A.; Schweizerhof, K., Computational contact mechanics-geometrically exact theory for arbitrary shaped bodies, (2012), Springer Heidelberg; New York; Dordrecht; London · Zbl 1264.74001
[42] Konyukhov, A.; Schweizerhof, K., On the solvability of closest point projection procedures in contact analysis: analysis and solution strategy for surfaces of arbitrary geometry, Comput. Methods Appl. Mech. Engrg., 197, 3045-3056, (2008) · Zbl 1194.74223
[43] Konyukhov, A.; Schweizerhof, K., On a continuous transfer of history variables for frictional contact problems based on interpretations of covariant derivatives as a parallel translation, (Eberhard, P., IUTAM Symposium — “Multiscale problems in Multibody System Contacts”, IUTAM Bookseries, (2006), Springer), 95-101 · Zbl 1208.74151
[44] Simo, J. C.; Hughes, T. J.R., Elastoplasticity and viscoplasticity: computational aspects, (1992), Springer-Verlag Berlin
[45] Izi, R.; Konyukhov, A.; Schweizerhof, K., 3D frictionless contact problems with large load-steps based on the covariant description for higher order approximation, Eng. Struct., 50, 107-114, (2013), Engineering Structures: Modelling and Computations (special issue IASS-IACM 2012)
[46] Konyukhov, A., Contact of ropes and orthotropic rough surfaces, (2013), ZAMM Wiley-VCH · Zbl 1322.74033
[47] Euler, L., Remarques sur l’effet du frottement dans l’equilibre, Mem. Acad. Sci. Berlin, 18, 265-278, (1769)
[48] J.A. Eytelwein, Handbuch der Statik fester Körper mit vorzüglicher Rücksicht auf ihre Anwendung in der Architektur, vol. 2, pp. 21-23, Berlin, 1808.; J.A. Eytelwein, Handbuch der Statik fester Körper mit vorzüglicher Rücksicht auf ihre Anwendung in der Architektur, vol. 2, pp. 21-23, Berlin, 1808.
[49] M. Strobl, A. Konyukhov, K. Schweizerhof, A six-nodes solid-beam finite element with elliptic cross section, 84th GAMM-2013 Annual Meeting, Novi Sad, Serbia, 18-22 March, 2013.; M. Strobl, A. Konyukhov, K. Schweizerhof, A six-nodes solid-beam finite element with elliptic cross section, 84th GAMM-2013 Annual Meeting, Novi Sad, Serbia, 18-22 March, 2013.
[50] M. Strobl, A. Konyukhov, R. Izi, K. Schweizerhof, A solid beam element including cross section deformation dedicated for cable contact, Contact Mechanics International Symposium (CMIS 2014), February 3-5, 2014, Abu Dhabi, United Arab Emirates.; M. Strobl, A. Konyukhov, R. Izi, K. Schweizerhof, A solid beam element including cross section deformation dedicated for cable contact, Contact Mechanics International Symposium (CMIS 2014), February 3-5, 2014, Abu Dhabi, United Arab Emirates.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.