×

Biorthogonal splines for optimal weak patch-coupling in isogeometric analysis with applications to finite deformation elasticity. (English) Zbl 1440.74451

Summary: A new construction of biorthogonal splines for isogeometric mortar methods is proposed. The biorthogonal basis has a local support and, at the same time, optimal approximation properties, which yield optimal results with mortar methods. We first present the univariate construction, which has an inherent crosspoint modification. The multivariate construction is then based on a tensor product for weighted integrals, whereby the important properties are inherited from the univariate case. Numerical results including large deformations confirm the optimality of the newly constructed biorthogonal basis.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
74B05 Classical linear elasticity

References:

[1] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 41-43, 5257-5296 (2006) · Zbl 1119.74024
[2] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis. Towards Integration of CAD and FEA (2009), Wiley: Wiley Chichester · Zbl 1378.65009
[3] Beirão Da Veiga, L.; Buffa, A.; Sangalli, G.; Vázquez, R., Mathematical analysis of variational isogeometric methods, Acta Numer., 23, 157-287 (2014) · Zbl 1398.65287
[4] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis: An overview and computer implementation aspects, Math. Comput. Simulation, 117, 89-116 (2015) · Zbl 1540.65492
[5] Höllig, K., (Finite Element Methods with B-Splines. Finite Element Methods with B-Splines, Frontiers in Applied Mathematics (2003), SIAM) · Zbl 1020.65085
[6] Nguyen, V. P.; Kerfriden, P.; Brino, M.; Bordas, S. P.A.; Bonisoli, E., Nitsche’s method for two and three dimensional NURBS patch coupling, Comput. Mech., 53, 6, 1163-1182 (2014) · Zbl 1398.74379
[7] Apostolatos, A.; Schmidt, R.; Wüchner, R.; Bletzinger, K. U., A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis, Internat. J. Numer. Methods Engrg., 97, 473-504 (2014) · Zbl 1352.74315
[8] Hofer, C.; Langer, U.; Toulopoulos, I., Discontinuous Galerkin isogeometric analysis on non-matching segmentation: Error estimates and efficient solvers, 36 (2016), RICAM: RICAM Linz, Austria
[9] Dornisch, W.; Vitucci, G.; Klinkel, S., The weak substitution method – an application of the mortar method for patch coupling in NURBS-based isogeometric analysis, Internat. J. Numer. Methods Engrg., 103, 3, 205-234 (2015) · Zbl 1352.65492
[10] Hesch, C.; Betsch, P., Isogeometric analysis and domain decomposition methods, Comput. Methods Appl. Mech. Eng., 213-216, 104-112 (2012) · Zbl 1243.74182
[11] Coox, L.; Greco, F.; Atak, O.; Vandepitte, D.; Desmet, W., A robust patch coupling method for NURBS-based isogeometric analysis of non-conforming multipatch surfaces, Comput. Methods Appl. Mech. Engrg., 316, 235-260 (2017) · Zbl 1439.65154
[12] Horger, T.; Reali, A.; Wohlmuth, B.; Wunderlich, L., A hybrid isogeometric approach on multi-patches with applications to Kirchhoff plates and eigenvalue problems, CMAME (CMAME-D-18-01074) (2018), submitted for publication, https://arxiv.org/abs/1701.06353
[13] Marussig, B.; Hughes, T. J.R., A review of trimming in isogeometric analysis: challenges, data exchange and simulation aspects, Arch. Comput. Methods Eng., 1-69 (2017)
[14] De Lorenzis, L.; Wriggers, P.; Hughes, T. J.R., Isogeometric contact: a review, GAMM-Mitt., 37, 1, 85-123 (2014) · Zbl 1308.74114
[15] Antolin, P.; Buffa, A.; Fabre, M., A priori error for unilateral contact problems with lagrange multiplier and IsoGeometric Analysis (2017), https://arxiv.org/abs/1701.03150
[16] Ben Belgacem, F., The mortar finite element method with Lagrange multipliers, Numer. Math., 84, 173-197 (1999) · Zbl 0944.65114
[17] Bernardi, C.; Maday, Y.; Patera, A. T., A new nonconforming approach to domain decomposition: the mortar element method, (et.al., H. B., Nonlinear Partial Differrential Equations and Their Applications, vol. XI (1994), Collège de France), 13-51 · Zbl 0797.65094
[18] Wohlmuth, B., (Discretization techniques and iterative solvers based on domain decomposition. Discretization techniques and iterative solvers based on domain decomposition, Lectures Notes in Computational Science and Engineering, vol. 17 (2001), Springer, Heidelberg) · Zbl 0966.65097
[19] Brivadis, E.; Buffa, A.; Wohlmuth, B.; Wunderlich, L., Isogeometric mortar methods, Comput. Methods Appl. Mech. Engrg., 284, 292-319 (2015) · Zbl 1425.65150
[20] Wohlmuth, B., A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38, 989-1012 (2000) · Zbl 0974.65105
[21] Popp, A.; Gee, M. W.; Wall, W. A., A finite deformation mortar contact formulation using a primal-dual active set strategy, Internat. J. Numer. Methods Engrg., 79, 11, 1354-1391 (2009) · Zbl 1176.74133
[22] Popp, A.; Gitterle, M.; Gee, M. W.; Wall, W. A., A dual mortar approach for 3D finite deformation contact with consistent linearization, Internat. J. Numer. Methods Engrg., 83, 11, 1428-1465 (2010) · Zbl 1202.74183
[23] Popp, A.; Seitz, A.; Gee, M. W.; Wall, W. A., Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach, Comput. Methods Appl. Mech. Engrg., 264, 67-80 (2013) · Zbl 1286.74106
[24] Popp, A.; Wall, W. A., Dual mortar methods for computational contact mechanics - overview and recent developments, GAMM-Mitt., 37, 1, 66-84 (2014) · Zbl 1308.74119
[25] Lamichhane, B.; Wohlmuth, B., Biorthogonal bases with local support and approximation properties, Math. Comp., 76, 257, 233-249 (2007) · Zbl 1121.65120
[26] Wohlmuth, B.; Popp, A.; Gee, M. W.; Wall, W. A., An abstract framework for a priori estimates for contact problems in 3d with quadratic finite elements, Comput. Mech., 49, 735-747 (2012) · Zbl 1312.74047
[27] Popp, A.; Wohlmuth, B.; Gee, M. W.; Wall, W. A., Dual Quadratic Mortar Finite Element Methods for 3D finite deformation contact, SIAM J. Sci. Comput., B421-B446 (2012) · Zbl 1250.74020
[28] Seitz, A.; Farah, P.; Kremheller, J.; Wohlmuth, B.; Wall, W. A.; Popp, A., Isogeometric dual mortar methods for computational contact mechanics, Comput. Methods Appl. Mech. Engrg., 301, 259-280 (2016) · Zbl 1425.74490
[29] Oswald, P.; Wohlmuth, B., On polynominal reproduction of dual fe bases, (Debit, N.; Garbey, M.; Hoppe, R.; Keyes, D.; Kuznetsov, Y.; Périaux, J., Domain Decomposition Methods in Science and Engineering (2002), CIMNE), 85-96, 13th International Conference on Domain Decomposition Methods, Lyon, France · Zbl 1026.65098
[30] Dornisch, W.; Stöckler, J.; Müller, R., Dual and approximate dual basis functions for B-splines and NURBS Comparison and application for an efficient coupling of patches with the isogeometric mortar method, Comput. Methods Appl. Mech. Engrg., 316, 449-496 (2017) · Zbl 1439.65157
[31] Zou, Z.; Scott, M.; Borden, M.; Thomas, D.; Dornisch, W.; Brivadis, E., Isogeometric Bézier dual mortaring: Refineable higher-order spline dual bases and weakly continuous geometry, Comput. Methods Appl. Mech. Engrg., 333, 497-534 (2018) · Zbl 1440.65240
[32] Brivadis, E.; Buffa, A.; Wohlmuth, B.; Wunderlich, L., The influence of quadrature errors on isogeometric mortar methods, (Jüttler, B.; Simeon, B., Isogeometric Analysis and Applications 2014 (2015), Springer International Publishing: Springer International Publishing Cham), 33-50 · Zbl 1334.65195
[33] Maday, Y.; Rapetti, F.; Wohlmuth, B., The influence of quadrature formulas in 2D and 3D mortar element methods., (Recent Developments in Domain Decomposition Methods. Some Papers of the Workshop on Domain Decomposition, ETH Zürich, Switzerland, June 7-8. 2001 (2002), Springer), 203-221 · Zbl 1007.65096
[34] Cazabeau, L.; Lacour, C.; Maday, Y., Numerical quadrature and mortar methods, (Computational Science for the 21st Century (1997), John Wiley and Sons), 119-128 · Zbl 0911.65117
[35] Farah, P.; Popp, A.; Wall, W. A., Segment-based vs. element-based integration for mortar methods in computational contact mechanics, Comput. Mech., 55, 1, 209-228 (2015) · Zbl 1311.74120
[36] Boffi, D.; Brezzi, F.; Fortin, M., Mixed Finite Element Methods and Applications (2013), Springer: Springer Berlin · Zbl 1277.65092
[37] Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034
[38] Wall, W. A.; Kronbichler, M., BACI: A Multiphysics Simulation Environment (2018), Technische Universität München
[39] Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity (1977), Springer, Translated from the Russian
[40] Flemisch, B.; Puso, M.; Wohlmuth, B., A new dual mortar method for curved interfaces: 2D elasticity, Internat. J. Numer. Methods Eng., 63, 813-832 (2005) · Zbl 1084.74050
[41] Flemisch, B.; Wohlmuth, B., Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D, Comput. Methods Appl. Mech. Engrg., 196, 1589-1602 (2007) · Zbl 1173.74416
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.