×

A perturbed Lagrangian formulation for the finite element solution of contact problems. (English) Zbl 0552.73097

Making use of a perturbed Lagrangian formulation, a finite element procedure for contact problems is developed for the general case in which node-to-node contact no longer holds. The proposed procedure leads naturally to a discretization of the contact interface into contact segments. Within the context of a bilinear interpolation for the displacement field, a mixed finite element approximation is introduced by assuming discontinuous contact pressure, constant on the contact segment. Because of this piece-wise constant approximation, the gap function enters into the formulation in an ”average” sense instead of through a point-wise definition. Numerical examples are presented that illustrate the performance of the proposed procedure.

MSC:

74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
74S99 Numerical and other methods in solid mechanics

Software:

Nike2D; Hondo
Full Text: DOI

References:

[1] Francavilla, A.; Zienkiewicz, O. C., A note on numerical computation of elastic contact problems, Internat. J. Numer. Meths. Engrg., 9, 913-924 (1975)
[2] Chan, S. K.; Tuba, I. S., A finite element method for contact problems of solid bodies: I. Theory and validation, Internat. J. Mech. Sci., 13, 627-639 (1971) · Zbl 0226.73052
[3] Hughes, T. J.R.; Taylor, R. L.; Sackman, J. L.; Curnier, A.; Kanoknukulchai, W., A finite element method for a class of contact-impact problems, Comput. Meths. Appl. Mech. Engrg., 8, 249-276 (1976) · Zbl 0367.73075
[4] Oden, J. T., Exterior penalty methods for contact problems in elasticity, (Bathe, K. J.; Stein, E.; Wunderlich, W., Nonlinear Finite Element Analysis in Structural Mechanics (1980), Springer: Springer Berlin) · Zbl 0458.73067
[5] Hallquist, J. O., NIKE2D: An implicit, finite-deformation, finite-element code for analyzing the static and dynamic response of two-dimensional solids, (Rept. UCRL-52678 (1979), University of California, Lawrence Livermore National Laboratory) · Zbl 0319.70015
[6] Kikuchi, N.; Oden, J. T., Contact problems in elastostatics, (Oden, J. T.; Carey, G. F., Finite Elements: Special Problems in Solid Mechanics, Vol. IV (1984), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ) · Zbl 0685.73002
[7] Fortin, M.; Glowinsky, R., Augmented Lagrangian Methods (1983), North-Holland: North-Holland Amsterdam · Zbl 0525.65045
[8] Glowinski, R.; le Tallec, P., Finite elements in nonlinear incompressible elasticity, (Oden, J. T.; Carey, G. F., Finite Elements: Special Problems in Solid Mechanics, Vol. IV (1984), Prentice-Hall: Prentice-Hall NJ) · Zbl 0551.73041
[9] Felippa, C. A., Error analysis of penalty function techniques for constraint definition in linear algebraic systems, Internat. J. Numer. Meths. Engrg., 11, 709-728 (1977) · Zbl 0362.65030
[10] Felippa, C. A., Iterative procedures for improving penalty function solutions of algebraic systems, Internat. J. Numer. Meths. Engrg., 12, 821-836 (1978) · Zbl 0378.65035
[11] Key, S. W., HONDO II, a finite element computer program for the large deformation dynamic response of axisymmetric solids, (Rept. SAND78-0422 (1978), Sandia Laboratories: Sandia Laboratories Albuquerque, NM)
[12] Wriggers, P.; Nour-Omid, B., Solution methods for contact problems, (Rept. No. UCB/SESM 84/09 (1984), Dept. Civil Engineering, University of California: Dept. Civil Engineering, University of California Berkeley, CA) · Zbl 0566.73094
[13] Luenberger, D. G., Linear and Nonlinear Programming (1984), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0241.90052
[14] Bertsekas, D. P., Constrained Optimization and Lagrange Multiplier Methods (1982), Academic Press: Academic Press New York · Zbl 0453.65045
[15] Carey, G. F.; Oden, J. T., (Finite Elements, Vol. II (1982), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ)
[16] Wriggers, P.; Simo, J. C.; Taylor, R. L., Penalty and augmented Lagrangian formulations for contact problems, (Proceedings NUMETA Conference. Proceedings NUMETA Conference, Swansea (1985))
[17] Girkmann, K., Flächentragwerke (1956), Springer: Springer Vienna · Zbl 0057.40202
[18] Wriggers, P., Zur Berechnung von Stoss- und Kontaktproblemen mit Hilfe der Finite-Element Methode, (Bericht Nr. F81/1 (1981), Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover: Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover Hannover)
[19] Zienkiewicz, O. C., The Finite Element Method (1977), McGraw-Hill: McGraw-Hill London · Zbl 0435.73072
[20] Valliappan, S.; Lee, I. K.; Boonlualohr, P., Non-linear analysis of contact problems, (Lewis, R. W.; Bettess, P.; Hinton, E., Numerical Methods in Coupled Systems (1984), Wiley: Wiley New York) · Zbl 0548.73091
[21] Kikuchi, N., A class of rigid punch problems involving forces and moments by reciprocal variational inequalities, J. Struct. Mech., 7, 273-295 (1979)
[22] Oden, J. T.; Kikuchi, N.; Song, Y. J., Penalty-finite element methods for the analysis of Stokesian flows, Comput. Meths. Appl. Mech. Engrg., 31, 297-329 (1982) · Zbl 0478.76041
[23] Marsden, J. E.; Hughes, T. J.R., Mathematical Foundations of Elasticity (1983), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0545.73031
[24] Wilson, E., The static condensation algorithm, Internat. J. Numer. Meths. Engrg., 8, 199-203 (1974)
[25] Reddy, J. N., On penalty function methods in the finite element analysis of flow problems, Internat. J. Numer. Meths. Fluids., 2, 151-172 (1984) · Zbl 0483.76008
[26] Simo, J. C.; Taylor, R. L., Consistent tangent operators for rate-independent elastoplasticity, Comput. Meths. Appl. Mech. Engrg., 48, 101-118 (1985) · Zbl 0535.73025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.