×

Optimal solid shells for nonlinear analyses of multilayer composites. I: Statics. (English) Zbl 1091.74524

Summary: We present a simple low-order solid-shell element formulation – having only displacement degrees of freedom (dofs), i.e., without rotational dofs – that has an optimal number of parameters to pass the patch tests, and thus allows for efficient and accurate analyses of large deformable multilayer shell structures using elements at extremely high aspect ratio. The formulation of this element is based on the mixed Fraeijs de Veubeke-Hu-Washizu variational principle leading to a novel enhancing strain tensor method that renders the computation particularly efficient, with improved in-plane and out-of-plane bending behavior (Poisson thickness locking), especially in refined analyses of composite structures involving a large number of high aspect-ratio layers. We also review the equivalence between various choices of the enhancing strains in tensor form, and point out the relative efficiency of these choices. We discuss the enhanced assumed strain (EAS) formulations based on both the Green–Lagrange strain and the displacement gradient (the companion paper), point out the pitfalls in each approach, e.g., not passing the patch test, and the possibility and the method to remedy the problem. Shear locking and curvature thickness locking are treated using the assumed natural strain (ANS) method. The element passes the patch tests (both membrane and out-of-plane bending). We provide an optimal combination of the ANS method and the minimal number of EAS parameters required to pass the out-of-plane bending patch test. Numerical examples involving static analyses of multilayer shell structures having a large range of element aspect ratios are presented. Finally, we note that the topic in this paper is a fitting dedication to Professor Ekkehard Ramm, who has made important pioneering contributions in this research direction.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
74E30 Composite and mixture properties

Software:

NIKE3D; DYNA3D
Full Text: DOI

References:

[1] Andelfinger, U.; Ramm, E., EAS-elements for 2-dimensional, 3-dimensional, plate and shell structures and their equivalence to HR-elements, I. J. Numer. Methods Engrg., 36, 8, 1311-1337 (1993) · Zbl 0772.73071
[2] Basar, Y.; Ding, Y.; Schultz, R., Refined shear-deformation models for composite laminates with finite rotations, I. J. of Solids Struct., 30, 19, 2611-2638 (1993) · Zbl 0794.73036
[3] G.P. Bazeley, Y.K. Cheung, B.M. Irons, O.C. Zienkiewicz, Triangular elements in bending-conforming and non-conforming solutions, Conference of matrix methods in structural mechanics, Air Force Inst. Tech., Wright-Patterson AF base, OH, 1965; G.P. Bazeley, Y.K. Cheung, B.M. Irons, O.C. Zienkiewicz, Triangular elements in bending-conforming and non-conforming solutions, Conference of matrix methods in structural mechanics, Air Force Inst. Tech., Wright-Patterson AF base, OH, 1965
[4] Betsch, P.; Stein, E., An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element, Commun. Numeri. Methods Engrg., 11, 899-909 (1995) · Zbl 0833.73051
[5] Betsch, P.; Stein, E., A non-linear extensible 4-node shell element based on continuum theory and assumed strain interpolations, J. Nonlin. Sci., 6, 169-199 (1996) · Zbl 0844.73075
[6] Betsch, P.; Gruttmann, F.; Stein, E., 4-node finite shell element for the implementation of general hyperelastic 3d-elasticity at finite strains, Comput. Methods Appl. Mech. Engrg., 130, 1-2, 57-79 (1996) · Zbl 0861.73068
[7] Bischoff, M.; Ramm, E., Shear deformable shell elements for large strains and rotations, Int. J. Numer. Methods Engrg., 40, 23, 4427-4449 (1997) · Zbl 0892.73054
[8] Bischoff, M.; Ramm, E., On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation, Int. J. Solids Struct., 37, 46, 6933-6960 (2000) · Zbl 1003.74045
[9] Braun, M.; Bischoff, M.; Ramm, E., Nonlinear shell formulations for complete 3-dimensional constitutive laws including composites and laminates, Comput. Mech., 15, 1, 1-18 (1994) · Zbl 0819.73042
[10] Brillouin, L., Les Tenseurs en Mecanique et en Elasticité (1946), Dover: Dover New York · Zbl 0063.00606
[11] Buchter, N.; Ramm, E.; Roehl, D., Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept, Int. J. Numer. Methods Engrg., 37, 15, 2551-2568 (1994) · Zbl 0808.73046
[12] Dvorkin, E. N.; Bathe, K.-J., Continuum mechanics based four-node shell element for general non-linear analysis, Engrg. Comput., 1, 1, 77-88 (1984)
[13] DYNA3D, A non-linear, explicit, three-dimensional finite element code for solid and structural mechanics-User manual, Lawrence Livermore National Laboratory, Livermore, CA, 1993; DYNA3D, A non-linear, explicit, three-dimensional finite element code for solid and structural mechanics-User manual, Lawrence Livermore National Laboratory, Livermore, CA, 1993
[14] Felippa, C. A., On the original publication of the general canonical functional of linear elasticity, ASME J. Appl. Mech., 67, 217-219 (2000) · Zbl 1110.74435
[15] C.H. Ferrim, private communication, Bell Helicopter Textron Inc., Fort Worth, TX, 2000; C.H. Ferrim, private communication, Bell Helicopter Textron Inc., Fort Worth, TX, 2000
[16] Hauptmann, R.; Schweizerhof, K., A systematic development of ‘solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom, Int. J. Numer. Methods Engrg., 42, 49-69 (1998) · Zbl 0917.73067
[17] Hughes, T. J.R.; Tezduyar, T. E., Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element, ASME J. of Appl. Mech., 587-596 (1981) · Zbl 0459.73069
[18] Irons, B.; Loikkanen, M., Engineers’ defence of the patch test, Int. J. Numer. Methods Engrg., 19, 9, 1391-1401 (1983) · Zbl 0516.73080
[19] C. Kassapoglou, private communication, Sikorsky Inc., 2000; C. Kassapoglou, private communication, Sikorsky Inc., 2000
[20] Kim, J.; Varadan, V. V.; Varadan, V. K., Finite element modelling of structures including piezoelectric active devices, Int. J. Numer. Methods Engrg., 40, 5, 817-832 (1997) · Zbl 0913.73064
[21] Klinkel, S.; Wagner, W., A geometrical non-linear brick element based on the EAS-method, Int. J. Numer. Methods Engrg., 40, 4529-4545 (1997) · Zbl 0899.73539
[22] Klinkel, S.; Gruttmann, F.; Wagner, W., A continuum based three-dimensional shell element for laminated structures, Comput. Struct., 71, 1, 43-62 (1999)
[23] MacNeal, R. H., A simple quadrilateral shell element, Comput. Struct., 8, 175-183 (1978) · Zbl 0369.73085
[24] MacNeal, R. H.; Harder, R. L., Proposed standard set of problems to test finite element accuracy, Finite Elements Anal. Des., 1, 1, 3-20 (1985)
[25] Malvern, L. E., Introduction to the Mechanics of a Continuous Medium (1969), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0181.53303
[26] Miehe, C., Theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains, Comput. Methods Appl. Mech.Engrg., 155, 3-4, 193-233 (1998) · Zbl 0970.74043
[27] Miehe, C.; Schroeder, J., Energy and momentum conserving elastodynamics of a non-linear brick-type mixed finite shell element, Int. J. Numer. Methods Engrg., 50, 8, 1801-1823 (2001) · Zbl 0977.74063
[28] NIKE3D, A nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics-User manual, Lawrence Livermore National Laboratory, Livermore, CA, 1995; NIKE3D, A nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics-User manual, Lawrence Livermore National Laboratory, Livermore, CA, 1995
[29] Parisch, H., A continuum-based shell theory for non-linear applications, Int. J. Numer. Methods Engrg., 38, 1855-1883 (1995) · Zbl 0826.73041
[30] Ramm, E., From Reissner plate theory to three dimensions in large deformation shell analysis, Z. Angewandte Mathe. Mech. (ZAMM), 80, 1, 61-68 (2000) · Zbl 0959.74042
[31] Reddy, J. N., Mechanics of Laminated Composite Plates: Theory and Analysis (1997), CRC Press: CRC Press Boca Raton, FL · Zbl 0899.73002
[32] Roehl, D.; Ramm, E., Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept, I. J. of Solids Struct., 33, 20-22, 3215-3237 (1996) · Zbl 0926.74109
[33] Simo, J. C.; Armero, F., Geometrically nonlinear enhanced-strain mixed methods and the method of incompatible modes, I. J. Numer. Methods Engrg., 33, 1413-1449 (1992) · Zbl 0768.73082
[34] Simo, J. C.; Hughes, T. J.R., On the variational foundations of assumed strain methods, ASME J. of Appl. Mech., 53, 41-54 (1986) · Zbl 0592.73019
[35] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, I. J. Numer. Methods Engrg., 29, 1595-1638 (1990) · Zbl 0724.73222
[36] Simo, J. C.; Fox, D. D.; Rifai, M. S., On a stress resultant geometrically exact shell model. Part III: Computational aspects of the non-linear theory, Comput. Methods Appl. Mech. Engrg., 79, 21-70 (1990) · Zbl 0746.73015
[37] Simo, J. C.; Kennedy, J. G.; Taylor, R. L., Complementary mixed finite element formulations for elastoplasticity, Comput. Methods Appl. Mech. Engrg., 74, 2, 177-206 (1989) · Zbl 0687.73064
[38] Simo, J. C.; Rifai, M. S.; Fox, D. D., On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching, Comput. Methods Appl. Mech. Engrg., 81, 91-126 (1992) · Zbl 0746.73016
[39] Spilker, R. L.; Jakobs, D. M., Hybrid stress reduced-mindlin elements for thin multilayer plates, Int. J. Numer. Methods Engrg., 23, 555-578 (1986) · Zbl 0584.73100
[40] G.M. Stanley, Continuum-based shell elements, PhD thesis, Stanford University, Stanford, California, 1985; G.M. Stanley, Continuum-based shell elements, PhD thesis, Stanford University, Stanford, California, 1985
[41] Sze, K. Y.; Yao, L. Q., A hybrid stress ANS solid-shell and its generalization for smart structure modelling. Part I-solid-shell element formulation, Int. J. Numer. Methods Engrg., 48, 545-564 (2000) · Zbl 0990.74073
[42] X.G. Tan, L. Vu-Quoc, Efficient and accurate multilayer solid-shell element: Nonlinear materials at finite strain, Int. J. Numer. Methods Engrg., submitted for publication; X.G. Tan, L. Vu-Quoc, Efficient and accurate multilayer solid-shell element: Nonlinear materials at finite strain, Int. J. Numer. Methods Engrg., submitted for publication · Zbl 1134.74414
[43] Taylor, R. L.; Beresford, P. J.; Wilson, E. L., A non-conforming element for stress analysis, Int. J. Numer. Methods Engrg., 10, 1211-1219 (1976) · Zbl 0338.73041
[44] Taylor, R. L.; Simo, J. C.; Zienkiewicz, O. C.; Chan, A. C.H., The patch test-a condition for assessing FEM convergence, Int. J. Numer. Methods Engrg., 22, 1, 39-62 (1986) · Zbl 0593.73072
[45] Vu-Quoc, L.; Deng, H., Galerkin projection for geometrically-exact sandwich beams allowing for ply drop-off, ASME J. Appl. Mech., 62, 479-488 (1995) · Zbl 0833.73066
[46] Vu-Quoc, L.; Ebcioğlu, I. K., General multilayer geometrically-exact beams/1-D plates with piecewise linear section deformation, Z. Angewandte Math. Mech. (ZAMM), 76, 7, 391-409 (1996) · Zbl 0905.73028
[47] Vu-Quoc, L.; Ebcioğlu, I. K., General multilayer geometrically-exact beams and one-dimensional plates with deformable layer thickness, Z. Angewandte Math. Mech. (ZAMM), 80, 2, 113-135 (2000) · Zbl 1005.74022
[48] Vu-Quoc, L.; Ebcioğlu, I. K., Multilayer shells: geometrically-exact formulation of equations of motion, Int. J. Solids Struct., 37, 45, 6705-6737 (2000) · Zbl 0986.74049
[49] L. Vu-Quoc, X.G. Tan, Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics, Comput. Methods Appl. Mech. Engrg. 192; L. Vu-Quoc, X.G. Tan, Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics, Comput. Methods Appl. Mech. Engrg. 192
[50] Vu-Quoc, L.; Deng, H.; Tan, X. G., Geometrically-exact sandwich shells: the static case, Comput. Methods Appl. Mech. Engrg., 189, 167-203 (2000) · Zbl 0983.74074
[51] Vu-Quoc, L.; Deng, H.; Tan, X. G., Geometrically-exact sandwich shells: the dynamic case, Comput. Methods Appl. Mech. Engrg., 190, 2825-2873 (2001) · Zbl 1050.74049
[52] Whitney, J. M., Bending-extensional coupling in laminated plates under transverse load, J. Compos. Mater., 3, 20-28 (1969)
[53] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, vol. 1, Basic Formulation and Linear Problems, 4th ed., McGraw-Hill, New York, 1989; O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, vol. 1, Basic Formulation and Linear Problems, 4th ed., McGraw-Hill, New York, 1989 · Zbl 0974.76003
[54] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, vol. 2, Solid and Fluid Mechanics, Dynamics and Non-linearity, 4th ed., McGraw-Hill, New York, 1991; O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, vol. 2, Solid and Fluid Mechanics, Dynamics and Non-linearity, 4th ed., McGraw-Hill, New York, 1991 · Zbl 0974.76004
[55] Zienkiewicz, O. C.; Taylor, R. L., Finite element patch test revisited. A computer test for convergence, validation and error estimates, Comput. Methods Appl. Mech. Engrg., 149, 1, 223-254 (1997) · Zbl 0918.73134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.