×

Conformal four-point correlation functions from the operator product expansion. (English) Zbl 1454.81187

Summary: We show how to compute conformal blocks of operators in arbitrary Lorentz representations using the formalism described in [the authors, J. High Energy Phys. 2020, No. 6, Paper No. 28, 87 p. (2020; Zbl 1437.81038)] and present several explicit examples of blocks derived via this method. The procedure for obtaining the blocks has been reduced to (1) determining the relevant group theoretic structures and (2) applying appropriate predetermined substitution rules. The most transparent expressions for the blocks we find are expressed in terms of specific substitutions on the Gegenbauer polynomials. In our examples, we study operators which transform as scalars, symmetric tensors, two-index antisymmetric tensors, as well as mixed representations of the Lorentz group.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R15 Operator algebra methods applied to problems in quantum theory
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
22E43 Structure and representation of the Lorentz group
62P35 Applications of statistics to physics

Citations:

Zbl 1437.81038

References:

[1] J.-F. Fortin and W. Skiba, A recipe for conformal blocks, arXiv:1905.00036 [INSPIRE].
[2] J.-F. Fortin and W. Skiba, New methods for conformal correlation functions, JHEP06 (2020) 028 [arXiv:1905.00434] [INSPIRE].
[3] S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE].
[4] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [INSPIRE].
[5] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE]. · Zbl 1329.81324
[6] V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions, Phys. Rev. D80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].
[7] F. Caracciolo and V.S. Rychkov, Rigorous Limits on the Interaction Strength in Quantum Field Theory, Phys. Rev. D81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].
[8] D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP05 (2011) 017 [arXiv:1009.2087] [INSPIRE]. · Zbl 1296.81067
[9] R. Rattazzi, S. Rychkov and A. Vichi, Central Charge Bounds in 4D Conformal Field Theory, Phys. Rev. D83 (2011) 046011 [arXiv:1009.2725] [INSPIRE]. · Zbl 1206.81116
[10] D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of 4D CFTs, JHEP05 (2012) 110 [arXiv:1109.5176] [INSPIRE].
[11] S. Rychkov, Conformal Bootstrap in Three Dimensions?, arXiv:1111.2115 [INSPIRE]. · Zbl 1365.81007
[12] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D86 (2012) 025022 [arXiv:1203.6064] [INSPIRE]. · Zbl 1310.82013
[13] P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFT_d, JHEP07 (2013) 113 [arXiv:1210.4258] [INSPIRE]. · Zbl 1342.81504
[14] S. El-Showk and M.F. Paulos, Bootstrapping Conformal Field Theories with the Extremal Functional Method, Phys. Rev. Lett.111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].
[15] F. Gliozzi, More constraining conformal bootstrap, Phys. Rev. Lett.111 (2013) 161602 [arXiv:1307.3111] [INSPIRE].
[16] L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, JHEP09 (2014) 144 [arXiv:1310.3757] [INSPIRE].
[17] D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP03 (2014) 100 [arXiv:1310.5078] [INSPIRE].
[18] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents, J. Stat. Phys.157 (2014) 869 [arXiv:1403.4545] [INSPIRE]. · Zbl 1310.82013
[19] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The \(\mathcal{N} = 8\) superconformal bootstrap in three dimensions, JHEP09 (2014) 143 [arXiv:1406.4814] [INSPIRE].
[20] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP11 (2014) 109 [arXiv:1406.4858] [INSPIRE]. · Zbl 1392.81202
[21] F. Caracciolo, A. Castedo Echeverri, B. von Harling and M. Serone, Bounds on OPE Coefficients in 4D Conformal Field Theories, JHEP10 (2014) 020 [arXiv:1406.7845] [INSPIRE]. · Zbl 1333.81365
[22] M.F. Paulos, JuliBootS: a hands-on guide to the conformal bootstrap, arXiv:1412.4127 [INSPIRE].
[23] C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The \(\mathcal{N} = 2\) superconformal bootstrap, JHEP03 (2016) 183 [arXiv:1412.7541] [INSPIRE]. · Zbl 1388.81482
[24] D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal Bootstrap, JHEP06 (2015) 174 [arXiv:1502.02033] [INSPIRE].
[25] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with Four Supercharges, JHEP08 (2015) 142 [arXiv:1503.02081] [INSPIRE]. · Zbl 1388.81638
[26] C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D93 (2016) 025016 [arXiv:1507.05637] [INSPIRE]. · Zbl 1388.81482
[27] L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Bootstrapping 3D Fermions, JHEP03 (2016) 120 [arXiv:1508.00012] [INSPIRE].
[28] D. Poland and A. Stergiou, Exploring the Minimal 4D \(\mathcal{N} = 1\) SCFT, JHEP12 (2015) 121 [arXiv:1509.06368] [INSPIRE]. · Zbl 1388.81691
[29] M. Lemos and P. Liendo, Bootstrapping \(\mathcal{N} = 2\) chiral correlators, JHEP01 (2016) 025 [arXiv:1510.03866] [INSPIRE]. · Zbl 1388.81056
[30] Y.-H. Lin, S.-H. Shao, D. Simmons-Duffin, Y. Wang and X. Yin, \( \mathcal{N} = 4\) superconformal bootstrap of the K 3 CFT, JHEP05 (2017) 126 [arXiv:1511.04065] [INSPIRE].
[31] S.M. Chester and S.S. Pufu, Towards bootstrapping QED_3, JHEP08 (2016) 019 [arXiv:1601.03476] [INSPIRE]. · Zbl 1390.81498
[32] C. Behan, PyCFTBoot: A flexible interface for the conformal bootstrap, Commun. Comput. Phys.22 (2017) 1 [arXiv:1602.02810] [INSPIRE]. · Zbl 1488.65136
[33] S. El-Showk and M.F. Paulos, Extremal bootstrapping: go with the flow, JHEP03 (2018) 148 [arXiv:1605.08087] [INSPIRE]. · Zbl 1388.81656
[34] Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, (2, 2) superconformal bootstrap in two dimensions, JHEP05 (2017) 112 [arXiv:1610.05371] [INSPIRE].
[35] M. Lemos, P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping \(\mathcal{N} = 3\) superconformal theories, JHEP04 (2017) 032 [arXiv:1612.01536] [INSPIRE]. · Zbl 1378.81142
[36] C. Beem, L. Rastelli and B.C. van Rees, More \(\mathcal{N} = 4\) superconformal bootstrap, Phys. Rev. D96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].
[37] D. Li, D. Meltzer and A. Stergiou, Bootstrapping mixed correlators in 4D \(\mathcal{N} = 1\) SCFTs, JHEP07 (2017) 029 [arXiv:1702.00404] [INSPIRE]. · Zbl 1380.81405
[38] S. Collier, P. Kravchuk, Y.-H. Lin and X. Yin, Bootstrapping the Spectral Function: On the Uniqueness of Liouville and the Universality of BTZ, JHEP09 (2018) 150 [arXiv:1702.00423] [INSPIRE]. · Zbl 1398.81202
[39] M. Cornagliotto, M. Lemos and V. Schomerus, Long Multiplet Bootstrap, JHEP10 (2017) 119 [arXiv:1702.05101] [INSPIRE].
[40] J. Qiao and S. Rychkov, Cut-touching linear functionals in the conformal bootstrap, JHEP06 (2017) 076 [arXiv:1705.01357] [INSPIRE]. · Zbl 1380.81357
[41] Y. Nakayama, Bootstrap experiments on higher dimensional CFTs, Int. J. Mod. Phys. A33 (2018) 1850036 [arXiv:1705.02744] [INSPIRE].
[42] C.-M. Chang and Y.-H. Lin, Carving Out the End of the World or (Superconformal Bootstrap in Six Dimensions), JHEP08 (2017) 128 [arXiv:1705.05392] [INSPIRE]. · Zbl 1381.83122
[43] A. Dymarsky, F. Kos, P. Kravchuk, D. Poland and D. Simmons-Duffin, The 3d Stress-Tensor Bootstrap, JHEP02 (2018) 164 [arXiv:1708.05718] [INSPIRE]. · Zbl 1387.81313
[44] D. Karateev, P. Kravchuk, M. Serone and A. Vichi, Fermion Conformal Bootstrap in 4d, JHEP06 (2019) 088 [arXiv:1902.05969] [INSPIRE]. · Zbl 1416.81158
[45] L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE].
[46] L. Cornalba, M.S. Costa and J. Penedones, Deep Inelastic Scattering in Conformal QCD, JHEP03 (2010) 133 [arXiv:0911.0043] [INSPIRE]. · Zbl 1271.81170
[47] D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE Convergence in Conformal Field Theory, Phys. Rev. D86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].
[48] M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE]. · Zbl 1397.81297
[49] Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].
[50] M. Hogervorst and S. Rychkov, Radial Coordinates for Conformal Blocks, Phys. Rev. D87 (2013) 106004 [arXiv:1303.1111] [INSPIRE]. · Zbl 1342.81497
[51] T. Hartman, S. Jain and S. Kundu, Causality Constraints in Conformal Field Theory, JHEP05 (2016) 099 [arXiv:1509.00014] [INSPIRE].
[52] H. Kim, P. Kravchuk and H. Ooguri, Reflections on Conformal Spectra, JHEP04 (2016) 184 [arXiv:1510.08772] [INSPIRE].
[53] D. Li, D. Meltzer and D. Poland, Conformal Collider Physics from the Lightcone Bootstrap, JHEP02 (2016) 143 [arXiv:1511.08025] [INSPIRE]. · Zbl 1388.81946
[54] Z. Komargodski, M. Kulaxizi, A. Parnachev and A. Zhiboedov, Conformal Field Theories and Deep Inelastic Scattering, Phys. Rev. D95 (2017) 065011 [arXiv:1601.05453] [INSPIRE].
[55] T. Hartman, S. Jain and S. Kundu, A New Spin on Causality Constraints, JHEP10 (2016) 141 [arXiv:1601.07904] [INSPIRE]. · Zbl 1390.83114
[56] D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A Proof of the Conformal Collider Bounds, JHEP06 (2016) 111 [arXiv:1603.03771] [INSPIRE]. · Zbl 1388.81048
[57] T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from Causality, JHEP07 (2017) 066 [arXiv:1610.05308] [INSPIRE]. · Zbl 1380.81327
[58] N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions from conformal field theory, JHEP12 (2017) 049 [arXiv:1610.09378] [INSPIRE]. · Zbl 1383.83024
[59] A. Gadde, In search of conformal theories, arXiv:1702.07362 [INSPIRE]. · Zbl 1434.81101
[60] M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP11 (2017) 193 [arXiv:1702.08471] [INSPIRE]. · Zbl 1383.81231
[61] S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE]. · Zbl 1382.81173
[62] M. Hogervorst, Crossing Kernels for Boundary and Crosscap CFTs, arXiv:1703.08159 [INSPIRE]. · Zbl 1390.81516
[63] M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk Phase Shift, CFT Regge Limit and Einstein Gravity, JHEP06 (2018) 121 [arXiv:1705.02934] [INSPIRE]. · Zbl 1395.83012
[64] D. Li, D. Meltzer and D. Poland, Conformal Bootstrap in the Regge Limit, JHEP12 (2017) 013 [arXiv:1705.03453] [INSPIRE]. · Zbl 1383.81242
[65] G.F. Cuomo, D. Karateev and P. Kravchuk, General Bootstrap Equations in 4D CFTs, JHEP01 (2018) 130 [arXiv:1705.05401] [INSPIRE]. · Zbl 1384.81094
[66] P. Dey and A. Kaviraj, Towards a Bootstrap approach to higher orders of E-expansion, JHEP02 (2018) 153 [arXiv:1711.01173] [INSPIRE]. · Zbl 1387.81310
[67] D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP07 (2018) 085 [arXiv:1711.03816] [INSPIRE]. · Zbl 1395.81246
[68] E. Elkhidir and D. Karateev, Scalar-Fermion Analytic Bootstrap in 4D, JHEP06 (2019) 026 [arXiv:1712.01554] [INSPIRE]. · Zbl 1416.81148
[69] P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP11 (2018) 102 [arXiv:1805.00098] [INSPIRE]. · Zbl 1404.81234
[70] D. Karateev, P. Kravchuk and D. Simmons-Duffin, Harmonic Analysis and Mean Field Theory, JHEP10 (2019) 217 [arXiv:1809.05111] [INSPIRE]. · Zbl 1427.81137
[71] P. Liendo, Y. Linke and V. Schomerus, A Lorentzian inversion formula for defect CFT, arXiv:1903.05222 [INSPIRE].
[72] S. Albayrak, D. Meltzer and D. Poland, More Analytic Bootstrap: Nonperturbative Effects and Fermions, JHEP08 (2019) 040 [arXiv:1904.00032] [INSPIRE]. · Zbl 1421.81104
[73] Z. Li, Bootstrapping Veneziano Amplitude of Vasiliev Theory and 3D Bosonization, arXiv:1906.05834 [INSPIRE].
[74] R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D Conformal Field Theories with Global Symmetry, J. Phys. A44 (2011) 035402 [arXiv:1009.5985] [INSPIRE]. · Zbl 1206.81116
[75] A. Vichi, Improved bounds for CFT’s with global symmetries, JHEP01 (2012) 162 [arXiv:1106.4037] [INSPIRE]. · Zbl 1306.81289
[76] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP06 (2014) 091 [arXiv:1307.6856] [INSPIRE]. · Zbl 1392.81202
[77] M. Berkooz, R. Yacoby and A. Zait, Bounds on \(\mathcal{N} = 1\) superconformal theories with global symmetries, JHEP08 (2014) 008 [Erratum ibid.01 (2015) 132] [arXiv:1402.6068] [INSPIRE]. · Zbl 1333.81361
[78] Y. Nakayama and T. Ohtsuki, Approaching the conformal window of O(n) × O(m) symmetric Landau-Ginzburg models using the conformal bootstrap, Phys. Rev. D89 (2014) 126009 [arXiv:1404.0489] [INSPIRE].
[79] Y. Nakayama and T. Ohtsuki, Five dimensional O(N)-symmetric CFTs from conformal bootstrap, Phys. Lett. B734 (2014) 193 [arXiv:1404.5201] [INSPIRE].
[80] Y. Nakayama and T. Ohtsuki, Bootstrapping phase transitions in QCD and frustrated spin systems, Phys. Rev. D91 (2015) 021901 [arXiv:1407.6195] [INSPIRE].
[81] J.-B. Bae and S.-J. Rey, Conformal Bootstrap Approach to O(N) Fixed Points in Five Dimensions, arXiv:1412.6549 [INSPIRE].
[82] S.M. Chester, S.S. Pufu and R. Yacoby, Bootstrapping O(N) vector models in 4 < d < 6, Phys. Rev. D91 (2015) 086014 [arXiv:1412.7746] [INSPIRE].
[83] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) Archipelago, JHEP11 (2015) 106 [arXiv:1504.07997] [INSPIRE]. · Zbl 1388.81054
[84] S.M. Chester, S. Giombi, L.V. Iliesiu, I.R. Klebanov, S.S. Pufu and R. Yacoby, Accidental Symmetries and the Conformal Bootstrap, JHEP01 (2016) 110 [arXiv:1507.04424] [INSPIRE]. · Zbl 1388.81382
[85] S.M. Chester, L.V. Iliesiu, S.S. Pufu and R. Yacoby, Bootstrapping O(N) Vector Models with Four Supercharges in 3 ≤ d ≤ 4, JHEP05 (2016) 103 [arXiv:1511.07552] [INSPIRE]. · Zbl 1388.81206
[86] P. Dey, A. Kaviraj and K. Sen, More on analytic bootstrap for O(N) models, JHEP06 (2016) 136 [arXiv:1602.04928] [INSPIRE]. · Zbl 1388.83223
[87] Y. Nakayama, Bootstrap bound for conformal multi-flavor QCD on lattice, JHEP07 (2016) 038 [arXiv:1605.04052] [INSPIRE].
[88] Z. Li and N. Su, Bootstrapping Mixed Correlators in the Five Dimensional Critical O(N) Models, JHEP04 (2017) 098 [arXiv:1607.07077] [INSPIRE]. · Zbl 1378.81120
[89] Y. Pang, J. Rong and N. Su, ϕ^3theory with F_4flavor symmetry in 6 − 2ϵ dimensions: 3-loop renormalization and conformal bootstrap, JHEP12 (2016) 057 [arXiv:1609.03007] [INSPIRE]. · Zbl 1390.81366
[90] A. Dymarsky, J. Penedones, E. Trevisani and A. Vichi, Charting the space of 3D CFTs with a continuous global symmetry, JHEP05 (2019) 098 [arXiv:1705.04278] [INSPIRE].
[91] A. Stergiou, Bootstrapping hypercubic and hypertetrahedral theories in three dimensions, JHEP05 (2018) 035 [arXiv:1801.07127] [INSPIRE]. · Zbl 1391.81174
[92] S.R. Kousvos and A. Stergiou, Bootstrapping Mixed Correlators in Three-Dimensional Cubic Theories, SciPost Phys.6 (2019) 035 [arXiv:1810.10015] [INSPIRE].
[93] A. Stergiou, Bootstrapping MN and Tetragonal CFTs in Three Dimensions, SciPost Phys.7 (2019) 010 [arXiv:1904.00017] [INSPIRE].
[94] L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP11 (2015) 101 [arXiv:1502.07707] [INSPIRE]. · Zbl 1388.81752
[95] L.F. Alday and A. Zhiboedov, Conformal Bootstrap With Slightly Broken Higher Spin Symmetry, JHEP06 (2016) 091 [arXiv:1506.04659] [INSPIRE]. · Zbl 1388.81753
[96] L.F. Alday and A. Zhiboedov, An Algebraic Approach to the Analytic Bootstrap, JHEP04 (2017) 157 [arXiv:1510.08091] [INSPIRE]. · Zbl 1378.81097
[97] L.F. Alday and A. Bissi, Crossing symmetry and Higher spin towers, JHEP12 (2017) 118 [arXiv:1603.05150] [INSPIRE]. · Zbl 1383.81172
[98] L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett.119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].
[99] L.F. Alday, Solving CFTs with Weakly Broken Higher Spin Symmetry, JHEP10 (2017) 161 [arXiv:1612.00696] [INSPIRE]. · Zbl 1383.81149
[100] S. Rychkov, EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions, SpringerBriefs in Physics (1, 2016), 10.1007/978-3-319-43626-5 [arXiv:1601.05000] [INSPIRE].
[101] D. Simmons-Duffin, The Conformal Bootstrap, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder U.S.A. (2015), pg. 1 [arXiv:1602.07982] [INSPIRE].
[102] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques, and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
[103] S.M. Chester, Weizmann Lectures on the Numerical Conformal Bootstrap, arXiv:1907.05147 [INSPIRE].
[104] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B599 (2001) 459 [hep-th/0011040] [INSPIRE]. · Zbl 1097.81734
[105] F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B678 (2004) 491 [hep-th/0309180] [INSPIRE]. · Zbl 1097.81735
[106] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B49 (1972) 77 [Erratum ibid.53 (1973) 643] [INSPIRE].
[107] S. Ferrara, A.F. Grillo, R. Gatto and G. Parisi, Analyticity properties and asymptotic expansions of conformal covariant green’s functions, Nuovo Cim. A19 (1974) 667 [INSPIRE].
[108] V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, Lect. Notes Phys.63 (1977) 1. · Zbl 0407.43010
[109] H. Exton, On the system of partial differential equations associated with Appell’s function F4, J. Phys. A28 (1995) 631. · Zbl 0856.33012
[110] S. Giombi, S. Prakash and X. Yin, A Note on CFT Correlators in Three Dimensions, JHEP07 (2013) 105 [arXiv:1104.4317] [INSPIRE]. · Zbl 1342.81492
[111] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP11 (2011) 071 [arXiv:1107.3554] [INSPIRE]. · Zbl 1306.81207
[112] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE]. · Zbl 1097.81735
[113] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Blocks, JHEP11 (2011) 154 [arXiv:1109.6321] [INSPIRE]. · Zbl 1306.81148
[114] D. Simmons-Duffin, Projectors, Shadows, and Conformal Blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE]. · Zbl 1333.83125
[115] M.S. Costa and T. Hansen, Conformal correlators of mixed-symmetry tensors, JHEP02 (2015) 151 [arXiv:1411.7351] [INSPIRE]. · Zbl 1388.53102
[116] E. Elkhidir, D. Karateev and M. Serone, General Three-Point Functions in 4D CFT, JHEP01 (2015) 133 [arXiv:1412.1796] [INSPIRE]. · Zbl 1388.81409
[117] A. Castedo Echeverri, E. Elkhidir, D. Karateev and M. Serone, Deconstructing Conformal Blocks in 4D CFT, JHEP08 (2015) 101 [arXiv:1505.03750] [INSPIRE]. · Zbl 1388.81409
[118] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, JHEP01 (2016) 146 [arXiv:1508.00501] [INSPIRE]. · Zbl 1388.81047
[119] F. Rejon-Barrera and D. Robbins, Scalar-Vector Bootstrap, JHEP01 (2016) 139 [arXiv:1508.02676] [INSPIRE].
[120] J. Penedones, E. Trevisani and M. Yamazaki, Recursion Relations for Conformal Blocks, JHEP09 (2016) 070 [arXiv:1509.00428] [INSPIRE]. · Zbl 1390.81533
[121] L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Fermion-Scalar Conformal Blocks, JHEP04 (2016) 074 [arXiv:1511.01497] [INSPIRE]. · Zbl 1388.81051
[122] A. Castedo Echeverri, E. Elkhidir, D. Karateev and M. Serone, Seed Conformal Blocks in 4D CFT, JHEP02 (2016) 183 [arXiv:1601.05325] [INSPIRE]. · Zbl 1388.81745
[123] M. Isachenkov and V. Schomerus, Superintegrability of d-dimensional Conformal Blocks, Phys. Rev. Lett.117 (2016) 071602 [arXiv:1602.01858] [INSPIRE]. · Zbl 1395.81227
[124] M.S. Costa, T. Hansen, J. Penedones and E. Trevisani, Projectors and seed conformal blocks for traceless mixed-symmetry tensors, JHEP07 (2016) 018 [arXiv:1603.05551] [INSPIRE]. · Zbl 1388.81798
[125] M.S. Costa, T. Hansen, J. Penedones and E. Trevisani, Radial expansion for spinning conformal blocks, JHEP07 (2016) 057 [arXiv:1603.05552] [INSPIRE]. · Zbl 1390.81501
[126] H.-Y. Chen and J.D. Qualls, Quantum Integrable Systems from Conformal Blocks, Phys. Rev. D95 (2017) 106011 [arXiv:1605.05105] [INSPIRE].
[127] M. Nishida and K. Tamaoka, Geodesic Witten diagrams with an external spinning field, PTEP2017 (2017) 053B06 [arXiv:1609.04563] [INSPIRE]. · Zbl 1477.83037
[128] C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP03 (2019) 163 [arXiv:1612.00809] [INSPIRE]. · Zbl 1414.81233
[129] V. Schomerus, E. Sobko and M. Isachenkov, Harmony of Spinning Conformal Blocks, JHEP03 (2017) 085 [arXiv:1612.02479] [INSPIRE]. · Zbl 1377.81182
[130] P. Kravchuk and D. Simmons-Duffin, Counting Conformal Correlators, JHEP02 (2018) 096 [arXiv:1612.08987] [INSPIRE]. · Zbl 1387.81325
[131] F. Gliozzi, A.L. Guerrieri, A.C. Petkou and C. Wen, The analytic structure of conformal blocks and the generalized Wilson-Fisher fixed points, JHEP04 (2017) 056 [arXiv:1702.03938] [INSPIRE]. · Zbl 1378.81119
[132] A. Castro, E. Llabrés and F. Rejon-Barrera, Geodesic Diagrams, Gravitational Interactions & OPE Structures, JHEP06 (2017) 099 [arXiv:1702.06128] [INSPIRE]. · Zbl 1380.81301
[133] E. Dyer, D.Z. Freedman and J. Sully, Spinning Geodesic Witten Diagrams, JHEP11 (2017) 060 [arXiv:1702.06139] [INSPIRE]. · Zbl 1383.81205
[134] C. Sleight and M. Taronna, Spinning Witten Diagrams, JHEP06 (2017) 100 [arXiv:1702.08619] [INSPIRE]. · Zbl 1380.81362
[135] H.-Y. Chen, E.-J. Kuo and H. Kyono, Anatomy of Geodesic Witten Diagrams, JHEP05 (2017) 070 [arXiv:1702.08818] [INSPIRE]. · Zbl 1380.81303
[136] S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].
[137] V. Cardoso, T. Houri and M. Kimura, Mass Ladder Operators from Spacetime Conformal Symmetry, Phys. Rev. D96 (2017) 024044 [arXiv:1706.07339] [INSPIRE].
[138] D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight Shifting Operators and Conformal Blocks, JHEP02 (2018) 081 [arXiv:1706.07813] [INSPIRE]. · Zbl 1387.81323
[139] P. Kravchuk, Casimir recursion relations for general conformal blocks, JHEP02 (2018) 011 [arXiv:1709.05347] [INSPIRE]. · Zbl 1387.81324
[140] P. Dey, K. Ghosh and A. Sinha, Simplifying large spin bootstrap in Mellin space, JHEP01 (2018) 152 [arXiv:1709.06110] [INSPIRE]. · Zbl 1384.81096
[141] S. Hollands, Action principle for OPE, Nucl. Phys. B926 (2018) 614 [arXiv:1710.05601] [INSPIRE]. · Zbl 1380.81187
[142] V. Schomerus and E. Sobko, From Spinning Conformal Blocks to Matrix Calogero-Sutherland Models, JHEP04 (2018) 052 [arXiv:1711.02022] [INSPIRE]. · Zbl 1390.81541
[143] M. Isachenkov and V. Schomerus, Integrability of conformal blocks. Part I. Calogero-Sutherland scattering theory, JHEP07 (2018) 180 [arXiv:1711.06609] [INSPIRE]. · Zbl 1395.81227
[144] J. Faller, S. Sarkar and M. Verma, Mellin Amplitudes for Fermionic Conformal Correlators, JHEP03 (2018) 106 [arXiv:1711.07929] [INSPIRE]. · Zbl 1388.81659
[145] J. Rong and N. Su, Scalar CFTs and Their Large N Limits, JHEP09 (2018) 103 [arXiv:1712.00985] [INSPIRE]. · Zbl 1398.81223
[146] H.-Y. Chen, E.-J. Kuo and H. Kyono, Towards Spinning Mellin Amplitudes, Nucl. Phys. B931 (2018) 291 [arXiv:1712.07991] [INSPIRE]. · Zbl 1390.81496
[147] C. Sleight and M. Taronna, Spinning Mellin Bootstrap: Conformal Partial Waves, Crossing Kernels and Applications, Fortsch. Phys.66 (2018) 1800038 [arXiv:1804.09334] [INSPIRE]. · Zbl 1404.81242
[148] M.S. Costa and T. Hansen, AdS Weight Shifting Operators, JHEP09 (2018) 040 [arXiv:1805.01492] [INSPIRE]. · Zbl 1398.81207
[149] N. Kobayashi and T. Nishioka, Spinning conformal defects, JHEP09 (2018) 134 [arXiv:1805.05967] [INSPIRE]. · Zbl 1398.81214
[150] A. Bhatta, P. Raman and N.V. Suryanarayana, Scalar Blocks as Gravitational Wilson Networks, JHEP12 (2018) 125 [arXiv:1806.05475] [INSPIRE]. · Zbl 1405.81118
[151] E. Lauria, M. Meineri and E. Trevisani, Spinning operators and defects in conformal field theory, JHEP08 (2019) 066 [arXiv:1807.02522] [INSPIRE]. · Zbl 1421.81120
[152] J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS Loops, and 6j Symbols, JHEP03 (2019) 052 [arXiv:1808.00612] [INSPIRE]. · Zbl 1414.81211
[153] N. Gromov, V. Kazakov and G. Korchemsky, Exact Correlation Functions in Conformal Fishnet Theory, JHEP08 (2019) 123 [arXiv:1808.02688] [INSPIRE]. · Zbl 1421.81114
[154] V. Rosenhaus, Multipoint Conformal Blocks in the Comb Channel, JHEP02 (2019) 142 [arXiv:1810.03244] [INSPIRE]. · Zbl 1411.81188
[155] X. Zhou, Recursion Relations in Witten Diagrams and Conformal Partial Waves, JHEP05 (2019) 006 [arXiv:1812.01006] [INSPIRE].
[156] V. Kazakov, E. Olivucci and M. Preti, Generalized fishnets and exact four-point correlators in chiral CFT_4, JHEP06 (2019) 078 [arXiv:1901.00011] [INSPIRE]. · Zbl 1416.81159
[157] W. Li, Closed-form expression for cross-channel conformal blocks near the lightcone, JHEP01 (2020) 055 [arXiv:1906.00707] [INSPIRE]. · Zbl 1434.81108
[158] V. Gon¸calves, R. Pereira and X. Zhou, 20^1Five-Point Function from AdS_5 × S^5Supergravity, JHEP10 (2019) 247 [arXiv:1906.05305] [INSPIRE].
[159] C.B. Jepsen and S. Parikh, Propagator identities, holographic conformal blocks, and higher-point AdS diagrams, JHEP10 (2019) 268 [arXiv:1906.08405] [INSPIRE]. · Zbl 1427.81136
[160] P.A.M. Dirac, Wave equations in conformal space, Annals Math.37 (1936) 429 [INSPIRE]. · JFM 62.1484.06
[161] G. Mack and A. Salam, Finite component field representations of the conformal group, Annals Phys.53 (1969) 174 [INSPIRE].
[162] S. Weinberg, Six-dimensional Methods for Four-dimensional Conformal Field Theories, Phys. Rev. D82 (2010) 045031 [arXiv:1006.3480] [INSPIRE].
[163] S. Weinberg, Six-dimensional Methods for Four-dimensional Conformal Field Theories II: Irreducible Fields, Phys. Rev. D86 (2012) 085013 [arXiv:1209.4659] [INSPIRE].
[164] S. Ferrara, A.F. Grillo and R. Gatto, Manifestly conformal covariant operator-product expansion, Lett. Nuovo Cim.2S2 (1971) 1363 [INSPIRE].
[165] S. Ferrara, R. Gatto and A.F. Grillo, Conformal invariance on the light cone and canonical dimensions, Nucl. Phys. B34 (1971) 349 [INSPIRE].
[166] S. Ferrara, A.F. Grillo and R. Gatto, Manifestly conformal-covariant expansion on the light cone, Phys. Rev. D5 (1972) 3102 [INSPIRE].
[167] S. Ferrara, P. Gatto and A.F. Grilla, Conformal algebra in space-time and operator product expansion, Springer Tracts Mod. Phys.67 (1973) 1 [INSPIRE].
[168] V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical Derivation of Vacuum Operator Product Expansion in Euclidean Conformal Quantum Field Theory, Phys. Rev. D13 (1976) 887 [INSPIRE].
[169] G. Mack, Convergence of Operator Product Expansions on the Vacuum in Conformal Invariant Quantum Field Theory, Commun. Math. Phys.53 (1977) 155 [INSPIRE].
[170] J.-F. Fortin and W. Skiba, Conformal Bootstrap in Embedding Space, Phys. Rev. D93 (2016) 105047 [arXiv:1602.05794] [INSPIRE].
[171] J.-F. Fortin and W. Skiba, Conformal Differential Operator in Embedding Space and its Applications, JHEP07 (2019) 093 [arXiv:1612.08672] [INSPIRE]. · Zbl 1418.81030
[172] V. Comeau, J.-F. Fortin and W. Skiba, Further Results on a Function Relevant for Conformal Blocks, arXiv:1902.08598 [INSPIRE].
[173] J.-F. Fortin, V. Prilepina and W. Skiba, Conformal two-point correlation functions from the operator product expansion, JHEP04 (2020) 114 [arXiv:1906.12349] [INSPIRE]. · Zbl 1436.81063
[174] J.-F. Fortin, V. Prilepina and W. Skiba, Conformal Three-Point Correlation Functions from the Operator Product Expansion, arXiv:1907.08599 [INSPIRE]. · Zbl 1436.81063
[175] F.A. Dolan and H. Osborn, Implications of N = 1 superconformal symmetry for chiral fields, Nucl. Phys. B593 (2001) 599 [hep-th/0006098] [INSPIRE]. · Zbl 0971.81550
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.