×

Conformal two-point correlation functions from the operator product expansion. (English) Zbl 1436.81063

Summary: We compute the most general embedding space two-point function in arbitrary Lorentz representations in the context of the recently introduced formalism in [J.-F. Fortin and W. Skiba, “A recipe for conformal blocks”, Preprint, arXiv:1905.000361; “New methods for conformal correlation functions”, Prperint, arXiv:1905.00434]. This work provides a first explicit application of this approach and furnishes a number of checks of the formalism. We project the general embedding space two-point function to position space and find a form consistent with conformal covariance. Several concrete examples are worked out in detail. We also derive constraints on the OPE coefficient matrices appearing in the two-point function, which allow us to impose unitarity conditions on the two-point function coefficients for operators in any Lorentz representations.

MSC:

81R15 Operator algebra methods applied to problems in quantum theory
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83A05 Special relativity
22E15 General properties and structure of real Lie groups
62P35 Applications of statistics to physics

Software:

CFTs4D

References:

[1] J.-F. Fortin and W. Skiba, A recipe for conformal blocks, arXiv:1905.00036 [INSPIRE].
[2] J.-F. Fortin and W. Skiba, New Methods for Conformal Correlation Functions, arXiv:1905.00434 [INSPIRE].
[3] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE]. · Zbl 1097.81734
[4] F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE]. · Zbl 1097.81735
[5] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE]. · Zbl 1097.81735
[6] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE]. · Zbl 1329.81324
[7] S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE].
[8] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [Sov. Phys. JETP39 (1974) 9] [INSPIRE].
[9] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
[10] P.A.M. Dirac, Wave equations in conformal space, Annals Math.37 (1936) 429 [INSPIRE]. · Zbl 0014.08004
[11] G. Mack, Convergence of Operator Product Expansions on the Vacuum in Conformal Invariant Quantum Field Theory, Commun. Math. Phys.53 (1977) 155 [INSPIRE].
[12] R. Rattazzi, S. Rychkov and A. Vichi, Central Charge Bounds in 4D Conformal Field Theory, Phys. Rev.D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE]. · Zbl 1206.81116
[13] D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP05 (2011) 017 [arXiv:1009.2087] [INSPIRE]. · Zbl 1296.81067
[14] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP11 (2011) 071 [arXiv:1107.3554] [INSPIRE]. · Zbl 1306.81207
[15] D. Simmons-Duffin, Projectors, Shadows and Conformal Blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE]. · Zbl 1333.83125
[16] T. Hartman, S. Jain and S. Kundu, A New Spin on Causality Constraints, JHEP10 (2016) 141 [arXiv:1601.07904] [INSPIRE]. · Zbl 1390.83114
[17] D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A Proof of the Conformal Collider Bounds, JHEP06 (2016) 111 [arXiv:1603.03771] [INSPIRE]. · Zbl 1388.81048
[18] T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from Causality, JHEP07 (2017) 066 [arXiv:1610.05308] [INSPIRE]. · Zbl 1380.81327
[19] N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions from conformal field theory, JHEP12 (2017) 049 [arXiv:1610.09378] [INSPIRE]. · Zbl 1383.83024
[20] G.F. Cuomo, D. Karateev and P. Kravchuk, General Bootstrap Equations in 4D CFTs, JHEP01 (2018) 130 [arXiv:1705.05401] [INSPIRE]. · Zbl 1384.81094
[21] P. Cvitanović, Group theory: Birdtracks, Lie’s and exceptional groups, Princeton University Press, Princeton U.S.A. (2008) and online at http://press.princeton.edu/titles/8839.html. · Zbl 1152.22001
[22] M.S. Costa and T. Hansen, Conformal correlators of mixed-symmetry tensors, JHEP02 (2015) 151 [arXiv:1411.7351] [INSPIRE]. · Zbl 1388.53102
[23] M.S. Costa, T. Hansen, J. Penedones and E. Trevisani, Projectors and seed conformal blocks for traceless mixed-symmetry tensors, JHEP07 (2016) 018 [arXiv:1603.05551] [INSPIRE]. · Zbl 1388.81798
[24] D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight Shifting Operators and Conformal Blocks, JHEP02 (2018) 081 [arXiv:1706.07813] [INSPIRE]. · Zbl 1387.81323
[25] M.S. Costa and T. Hansen, AdS Weight Shifting Operators, JHEP09 (2018) 040 [arXiv:1805.01492] [INSPIRE]. · Zbl 1398.81207
[26] F. Rejon-Barrera and D. Robbins, Scalar-Vector Bootstrap, JHEP01 (2016) 139 [arXiv:1508.02676] [INSPIRE].
[27] H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys.231 (1994) 311 [hep-th/9307010] [INSPIRE]. · Zbl 0795.53073
[28] R.F. Streater and A.S. Wightman, PCT, spin and statistics, and all that, Advanced Book Classics, volume 231, Addison-Wesley, Redwood City U.S.A. (1989). · Zbl 0704.53058
[29] E.S. Fradkin and M.Y. Palchik, Conformal quantum field theory in D-dimensions, Mathematics and its Applications, volume 376, Springer (1996). · Zbl 0896.70001
[30] S. Rychkov, EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions, SpringerBriefs in Physics, Springer, Cham Switzerland (2016), [arXiv:1601.05000] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.