×

The Fibonacci Hamiltonian. (English) Zbl 1359.81108

In this paper, the authors study the Fibonacci Hamiltonian. According to the authors the spectrum of the Fibonacci Hamiltonian is a dynamically defined Cantor set and that the density of states measure is exact dimensional; this implies that all standard fractal dimensions coincide in each case. The authors show that all the gaps of the spectrum allowed by the gap labeling theorem are open for all values of the coupling constant. Also, the authors consider the optimal Hölder exponent of the integrated density of states, the dimension of the density of states measure, the dimension of the spectrum, and the upper transport exponent, establish strict inequalities between them, and provide the exact large coupling asymptotics of the dimension of the density of states measure. The authors also provide the explicit relations between these spectral characteristics and the dynamical properties of the Fibonacci trace map. They establish exact identities relating the spectral and dynamical quantities, and show the connection between the spectral quantities and the thermodynamic pressure function. In the rest, the authors provide the exact statement of the results.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35P05 General topics in linear spectral theory for PDEs
82B30 Statistical thermodynamics

References:

[1] Abe, S., Hiramoto, H.: Fractal dynamics of electron wave packets in one-dimensional quasiperiodic systems. Phys. Rev. A 36, 5349-5352 (1987) · Zbl 1371.78252 · doi:10.1103/PhysRevA.36.5349
[2] Avila, A., Jitomirskaya, S.: The Ten Martini problem. Ann. Math. 170, 303-342 (2009) · Zbl 1166.47031 · doi:10.4007/annals.2009.170.303
[3] Avila, A., Jitomirskaya, S.: Almost localization and almost reducibility. J. Eur. Math. Soc. 12, 93-131 (2010) · Zbl 1185.47028 · doi:10.4171/JEMS/191
[4] Avila, A., You, J., Zhou, Q.: Sharp phase transitions for the almost Mathieu operator. arXiv:1512.03124 (Preprint) · Zbl 1503.47041
[5] Baake, M., Grimm, U.: Aperiodic Order, vol. 1. A Mathematical Invitation. Encyclopedia of Mathematics and its Applications, vol. 149. Cambridge University Press, Cambridge (2013) · Zbl 1295.37001
[6] Baake, M., Joseph, D., Kramer, P.: Periodic clustering in the spectrum of quasiperiodic Kronig-Penney models. Phys. Lett. A 168, 199-208 (1992) · doi:10.1016/0375-9601(92)90575-7
[7] Baake, M., Moody, R. (eds.): Directions in Mathematical Quasicrystals. CRM Monograph Series, vol. 13. American Mathematical Society, Providence (2000) · Zbl 0955.00025
[8] Barreira, L.: Thermodynamic Formalism and Applications to Dimension Theory. Progress in Mathematics, vol. 294. Birkhäuser/Springer Basel AG, Basel (2011) · Zbl 1258.37001
[9] Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \[\mathbb{C}^2\] C2: currents, equilibrium measure and hyperbolicity. Invent. Math. 103, 69-99 (1991) · Zbl 0721.58037 · doi:10.1007/BF01239509
[10] Bedford, E., Lyubich, M., Smillie, J.: Polynomial diffeomorphisms of \[\mathbb{C}^2\] C2. IV: The measure of maximal entropy and laminar currents. Invent. Math. 112, 77-125 (1993) · Zbl 0792.58034 · doi:10.1007/BF01232426
[11] Bellissard, J.: Gap labelling theorems for Schrödinger operators. In: From Number Theory to Physics (Les Houches, 1989), pp. 538-630. Springer, Berlin (1992) · Zbl 0833.47056
[12] Bellissard, J., Bovier, A., Ghez, J.-M.: Gap labelling theorems for one-dimensional discrete Schrödinger operators. Rev. Math. Phys. 4, 1-37 (1992) · Zbl 0791.47009 · doi:10.1142/S0129055X92000029
[13] Bellissard, J., Guarneri, I., Schulz-Baldes, H.: Phase-averaged transport for quasi-periodic Hamiltonians. Commun. Math. Phys 227, 515-539 (2002) · Zbl 1014.82021 · doi:10.1007/s002200200642
[14] Bellissard, J., Iochum, B., Scoppola, E., Testard, D.: Spectral properties of one-dimensional quasicrystals. Commun. Math. Phys. 125, 527-543 (1989) · Zbl 0825.58010 · doi:10.1007/BF01218415
[15] Bourgain, J.: Hölder regularity of integrated density of states for the almost Mathieu operator in a perturbative regime. Lett. Math. Phys. 51, 83-118 (2000) · Zbl 0960.34071 · doi:10.1023/A:1007641323456
[16] Breuer, J., Last, Y., Strauss, Y.: Eigenvalue spacings and dynamical upper bounds for discrete one-dimensional Schrödinger operators. Duke Math. J. 157, 425-460 (2011) · Zbl 1216.81071 · doi:10.1215/00127094-2011-006
[17] Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975) · Zbl 0308.28010
[18] Buzzard, G., Verma, K.: Hyperbolic automorphisms and holomorphic motions in \[{\mathbb{C}}^2\] C2. Mich. Math. J. 49, 541-565 (2001) · Zbl 0993.37024 · doi:10.1307/mmj/1012409970
[19] Cantat, S.: Bers and Hénon. Painlevé and Schrödinger. Duke Math. J. 149, 411-460 (2009) · Zbl 1181.37068 · doi:10.1215/00127094-2009-042
[20] Cantero, M.-J., Grünbaum, A., Moral, L., Velázquez, L.: Matrix-valued Szegő polynomials and quantum random walks. Commun. Pure Appl. Math. 63, 464-507 (2010) · Zbl 1186.81036
[21] Casdagli, M.: Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys. 107, 295-318 (1986) · Zbl 0606.39004 · doi:10.1007/BF01209396
[22] Choi, M., Elliott, G., Yui, N.: Gauss polynomials and the rotation algebra. Invent. Math. 99, 225-246 (1990) · Zbl 0665.46051 · doi:10.1007/BF01234419
[23] Conway, J.B.: Functions of One Complex Variable. II. Graduate Texts in Mathematics, vol. 159. Springer, New York (1995) · Zbl 0887.30003
[24] Damanik, D.: \[ \alpha\] α-continuity properties of one-dimensional quasicrystals. Commun. Math. Phys. 192, 169-182 (1998) · Zbl 0907.34073 · doi:10.1007/s002200050295
[25] Damanik, D.: Gordon-type arguments in the spectral theory of one-dimensional quasicrystals. In: Directions in Mathematical Quasicrystals, pp. 277-305. American Mathematical Society, Providence (2000) · Zbl 0989.81025
[26] Damanik, D.: Dynamical upper bounds for one-dimensional quasicrystals. J. Math. Anal. Appl. 303, 327-341 (2005) · Zbl 1077.81039 · doi:10.1016/j.jmaa.2004.08.038
[27] Damanik, D.: Strictly ergodic subshifts and associated operators. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, pp. 505-538. Proceedings of Symposia in Pure Mathematics, vol. 76, Part 2. American Mathematical Society, Providence (2007) · Zbl 1130.82017
[28] Damanik, D.: Schrödinger operators with dynamically defined potentials: a survey. Ergod. Theory Dyn. Syst. arXiv:1410.2445 (to appear) · Zbl 1541.81060
[29] Damanik, D., Embree, M., Gorodetski, A.: Spectral properties of Schrödinger operators arising in the study of quasicrystals. In: Kellendonk, J., Lenz, D., Savinien, J. (eds.) Mathematics of aperiodic order. Progress in Mathematics, vol. 309, pp. 307-370. Springer, Basel (2015) · Zbl 1378.81031
[30] Damanik, D., Embree, M., Gorodetski, A., Tcheremchantsev, S.: The fractal dimension of the spectrum of the Fibonacci Hamiltonian. Commun. Math. Phys. 280, 499-516 (2008) · Zbl 1192.81151 · doi:10.1007/s00220-008-0451-3
[31] Damanik, D., Fillman, J., Gorodetski, A.: Continuum Schrödinger operators associated with aperiodic subshifts. Ann. Henri Poincaré 15, 1123-1144 (2014) · Zbl 1292.81052 · doi:10.1007/s00023-013-0264-6
[32] Damanik, D., Gorodetski, A.: Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian. Nonlinearity 22, 123-143 (2009) · Zbl 1154.82312 · doi:10.1088/0951-7715/22/1/007
[33] Damanik, D., Gorodetski, A.: Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian. Commun. Math. Phys. 305, 221-277 (2011) · Zbl 1232.81016 · doi:10.1007/s00220-011-1220-2
[34] Damanik, D., Gorodetski, A.: The density of states measure of the weakly coupled Fibonacci Hamiltonian. Geom. Funct. Anal. 22, 976-989 (2012) · Zbl 1256.81035 · doi:10.1007/s00039-012-0173-8
[35] Damanik, D., Gorodetski, A.: Hölder continuity of the integrated density of states for the Fibonacci Hamiltonian. Commun. Math. Phys. 323, 497-515 (2013) · Zbl 1276.81059 · doi:10.1007/s00220-013-1753-7
[36] Damanik, D., Gorodetski, A.: Almost ballistic transport for the weakly coupled Fibonacci Hamiltonian. Isr. J. Math. 206, 109-126 (2015) · Zbl 1310.81065 · doi:10.1007/s11856-014-1108-x
[37] Damanik, D., Gorodetski, A., Solomyak, B.: Absolutely continuous convolutions of singular measures and an application to the Square Fibonacci Hamiltonian. Duke Math. J. 164, 1603-1640 (2015) · Zbl 1358.37117 · doi:10.1215/00127094-3119739
[38] Damanik, D., Killip, R., Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals. III. \[ \alpha\] α-continuity. Commun. Math. Phys. 212, 191-204 (2000) · Zbl 1045.81024 · doi:10.1007/s002200000203
[39] Damanik, D., Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals, I. Absence of eigenvalues. Commun. Math. Phys. 207, 687-696 (1999) · Zbl 0962.81012 · doi:10.1007/s002200050742
[40] Damanik, D., Munger, P., Yessen, W.: Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, I. The essential support of the measure. J. Approx. Theory 173, 56-88 (2013) · Zbl 1283.33005 · doi:10.1016/j.jat.2013.04.001
[41] Damanik, D., Munger, P., Yessen, W.: Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, II. Applications. J. Stat. Phys. 153, 339-362 (2013) · Zbl 1291.33010 · doi:10.1007/s10955-013-0830-9
[42] Damanik, D., Sütő, A., Tcheremchantsev, S.: Power-law bounds on transfer matrices and quantum dynamics in one dimension II. J. Funct. Anal. 216, 362-387 (2004) · Zbl 1059.81055 · doi:10.1016/j.jfa.2004.05.007
[43] Damanik, D., Tcheremchantsev, S.: Power-law bounds on transfer matrices and quantum dynamics in one dimension. Commun. Math. Phys. 236, 513-534 (2003) · Zbl 1033.81032 · doi:10.1007/s00220-003-0824-6
[44] Damanik, D., Tcheremchantsev, S.: Scaling estimates for solutions and dynamical lower bounds on wavepacket spreading. J. d’Anal. Math. 97, 103-131 (2005) · Zbl 1132.81018 · doi:10.1007/BF02807404
[45] Damanik, D., Tcheremchantsev, S.: Upper bounds in quantum dynamics. J. Am. Math. Soc. 20, 799-827 (2007) · Zbl 1114.81036 · doi:10.1090/S0894-0347-06-00554-6
[46] Damanik, D., Tcheremchantsev, S.: Quantum dynamics via complex analysis methods: general upper bounds without time-averaging and tight lower bounds for the strongly coupled Fibonacci Hamiltonian. J. Funct. Anal. 255, 2872-2887 (2008) · Zbl 1153.81011 · doi:10.1016/j.jfa.2008.08.010
[47] Damanik, D., Tcheremchantsev, S.: A general description of quantum dynamical spreading over an orthonormal basis and applications to Schrödinger operators. Discrete Contin. Dyn. Syst. 28, 1381-1412 (2010) · Zbl 1198.81085 · doi:10.3934/dcds.2010.28.1381
[48] Denisov, S., Kiselev, A.: Spectral properties of Schrödinger operators with decaying potentials. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, pp. 565-589. Proceedings of Symposia in Pure Mathematics, vol. 76, Part 2. American Mathematical Society, Providence (2007) · Zbl 1132.35352
[49] Even-Dar Mandel, S., Lifshitz, R.: Electronic energy spectra and wave functions on the square Fibonacci tiling. Philos. Mag. 86, 759-764 (2006) · Zbl 1198.81085
[50] Even-Dar Mandel, S., Lifshitz, R.: Electronic energy spectra of square and cubic Fibonacci quasicrystals. Philos. Mag. 88, 2261-2273 (2008) · Zbl 1053.81031
[51] Even-Dar Mandel, S., Lifshitz, R.: Bloch-like electronic wave functions in two-dimensional quasicrystals. arXiv:0808.3659 (Preprint) · Zbl 1370.82103
[52] Falconer, K.: Techniques in Fractal Geometry. Wiley, Chichester (1997) · Zbl 0869.28003
[53] Girand, A.: Dynamical Green functions and discrete Schrödinger operators with potentials generated by primitive invertible substitution. Nonlinearity 27, 527-543 (2014) · Zbl 1317.37052 · doi:10.1088/0951-7715/27/3/527
[54] Goldstein, M., Schlag, W.: Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann. Math. 154, 155-203 (2001) · Zbl 0990.39014 · doi:10.2307/3062114
[55] Goldstein, M., Schlag, W.: Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues. Geom. Funct. Anal. 18, 755-869 (2008) · Zbl 1171.82011 · doi:10.1007/s00039-008-0670-y
[56] Hadj Amor, S.: Hölder continuity of the rotation number for quasi-periodic co-cycles in SL \[(2,{\mathbb{R}})\](2,R). Commun. Math. Phys. 287, 565-588 (2009) · Zbl 1201.37066
[57] Hochman, M., Shmerkin, P.: Local entropy averages and projections of fractal measures. Ann. Math. 175, 1001-1059 (2012) · Zbl 1251.28008 · doi:10.4007/annals.2012.175.3.1
[58] Hof, A.: Some remarks on discrete aperiodic Schrödinger operators. J. Stat. Phys. 72, 1353-1374 (1993) · Zbl 1101.39301 · doi:10.1007/BF01048190
[59] Ilyashenko, Y., Yakovenko, S.: Lectures on Analytic Differential Equations. Graduate Studies in Mathematics, vol. 86. American Mathematical Society, Providence (2008) · Zbl 1186.34001
[60] Iommi, G.: The Bowen formula: dimension theory and thermodynamic formalism (Preprint) · Zbl 1276.81059
[61] Jitomirskaya, S.: Ergodic Schrödinger operators (on one foot). In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, pp. 613-647. Proceedings of Symposia in Pure Mathematics, vol. 76, Part 2. American Mathematical Society, Providence (2007) · Zbl 1129.82018
[62] Jitomirskaya, S., Last, Y.: Power-law subordinacy and singular spectra. II. Line operators. Commun. Math. Phys. 211, 643-658 (2000) · Zbl 1053.81031 · doi:10.1007/s002200050830
[63] Jitomirskaya, S., Marx, C.: Dynamics and spectral theory of quasi-periodic Schrödinger type operators. In: Ergodic Theory and Dynamical Systems. arXiv:1503.05740 (to appear) · Zbl 1384.37011
[64] Johnson, R.: Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients. J. Differ. Equ. 61, 54-78 (1986) · Zbl 0608.34056 · doi:10.1016/0022-0396(86)90125-7
[65] Kohmoto, M., Kadanoff, L.P., Tang, C.: Localization problem in one dimension: mapping and escape. Phys. Rev. Lett. 50, 1870-1876 (1983) · doi:10.1103/PhysRevLett.50.1870
[66] Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) · Zbl 0878.58020 · doi:10.1017/CBO9780511809187
[67] Keller, G.: Equilibrium States in Ergodic Theory. London Mathematical Society Student Texts, vol. 42. Cambridge University Press, Cambridge (1998) · Zbl 0896.28006
[68] Killip, R., Kiselev, A., Last, Y.: Dynamical upper bounds on wavepacket spreading. Am. J. Math. 125, 1165-1198 (2003) · Zbl 1053.81020 · doi:10.1353/ajm.2003.0031
[69] Kollar, J., Sütő, A.: The Kronig-Penney model on a Fibonacci lattice. Phys. Lett. A 117, 203-209 (1986) · doi:10.1016/0375-9601(86)90741-3
[70] Last, Y.: Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal. 142, 406-445 (1996) · Zbl 0905.47059 · doi:10.1006/jfan.1996.0155
[71] Lenz, D., Seifert, C., Stollmann, P.: Zero measure Cantor spectra for continuum one-dimensional quasicrystals. J. Differ. Equ. 256(6), 1905-1926 (2014) · Zbl 1351.47030 · doi:10.1016/j.jde.2013.12.003
[72] Liu, Q.-H., Peyrière, J., Wen, Z.-Y.: Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials. C. R. Math. Acad. Sci. Paris 345, 667-672 (2007) · Zbl 1132.47027 · doi:10.1016/j.crma.2007.10.048
[73] Liu, Q.-H., Qu, Y.-H., Wen, Z.-Y.: The fractal dimensions of the spectrum of Sturm Hamiltonian. Adv. Math. 257, 285-336 (2014) · Zbl 1294.28008 · doi:10.1016/j.aim.2014.02.019
[74] Liu, Q.-H., Wen, Z.-Y.: Hausdorff dimension of spectrum of one-dimensional Schrödinger operator with Sturmian potentials. Potential Anal. 20, 33-59 (2004) · Zbl 1049.81023 · doi:10.1023/A:1025537823884
[75] Makarov, N.: Fine structure of harmonic measure. St. Petersb. Math. J. 10, 217-268 (1999) · Zbl 0909.30016
[76] Makarov, N., Volberg, A.: On the harmonic measure of discontinuous fractals (1986) (preprint)
[77] Manning, A.: A relation between Lyapunov exponents, Hausdorff dimension and entropy. Ergod. Theory Dyn. Syst. 1, 451-459 (1981) · Zbl 0487.58011 · doi:10.1017/S0143385700001371
[78] Marin, L.: Dynamical bounds for Sturmian Schrödinger operators. Rev. Math. Phys. 22, 859-879 (2010) · Zbl 1201.81052 · doi:10.1142/S0129055X10004090
[79] McCluskey, H., Manning, A.: Hausdorff dimension for horseshoes. Ergod. Theory Dyn. Syst. 3, 251-260 (1983) · Zbl 0529.58022 · doi:10.1017/S0143385700001966
[80] Mei, M.: Spectra of discrete Schrödinger operators with primitive invertible substitution potentials. J. Math. Phys. 55, 082701 (2014) · Zbl 1302.82112 · doi:10.1063/1.4886535
[81] de Melo, W.: Structural stability of diffeomorphisms on two-manifolds. Invent. Math. 21, 233-246 (1973) · Zbl 0291.58011 · doi:10.1007/BF01390199
[82] Moody, R. (ed.): The mathematics of long-range aperiodic order. In: Proceedings of the NATO Advanced Study Institute held in Waterloo, ON, August 21-September 1, 995, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 489. Kluwer Academic Publishers Group, Dordrecht (1997) · Zbl 0861.00015
[83] Moreira, C.G., Yoccoz, J-Ch.: Stable intersections of regular Cantor sets with large Hausdorff dimensions. Ann. Math. 154, 45-96 (2001) · Zbl 1195.37015 · doi:10.2307/3062110
[84] Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H., Siggia, E.: One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett. 50, 1873-1877 (1983) · doi:10.1103/PhysRevLett.50.1873
[85] Palis, J., Takens, F.: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Cambridge University Press, Cambridge (1993) · Zbl 0790.58014
[86] Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187-188, 268 pp (1990) · Zbl 0726.58003
[87] Pollicott, M.: Analyticity of dimensions for hyperbolic surface diffeomorphisms. Proc. Am. Math. Soc. 143(8), 3465-3474 (2015) · Zbl 1346.37037
[88] Raymond, L.: A constructive gap labelling for the discrete Schrödinger operator on a quasiperiodic chain (1997) (preprint)
[89] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. III: Scattering Theory. Academic Press, New York (1979) · Zbl 0405.47007
[90] Roberts, J., Baake, M.: Trace maps as \[3D3\] D reversible dynamical systems with an invariant. J. Stat. Phys. 74, 829-888 (1994) · Zbl 0830.58025 · doi:10.1007/BF02188581
[91] Ruelle, D.: Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Encyclopedia of Mathematics and its Applications, vol. 5. Addison-Wesley Publishing Co., Reading (1978) · Zbl 0401.28016
[92] Sarig, O.: Lecture Notes on Thermodynamic Formalism for Topological Markov Shifts (preprint) · Zbl 1375.37099
[93] Shechtman, D., Blech, I., Gratias, D., Cahn, J.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951-1953 (1984) · doi:10.1103/PhysRevLett.53.1951
[94] Sigmund, K.: Generic properties of invariant measures for Axiom A diffeomorphisms. Invent. Math. 11, 99-109 (1970) · Zbl 0193.35502 · doi:10.1007/BF01404606
[95] Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory, Colloquium Publications, vol. 54. American Mathematical Society, Providence (2005) · Zbl 1082.42020
[96] Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 2. Spectral Theory, Colloquium Publications, vol. 54. American Mathematical Society, Providence (2005) · Zbl 1082.42021
[97] Simon, B.: Szegő’s Theorem and its Descendants. Spectral Theory for \[L^2\] L2 Perturbations of Orthogonal Polynomials. Princeton University Press, Princeton (2011) · Zbl 1230.33001
[98] Sire, C.: Electronic spectrum of a 2D quasi-crystal related to the octagonal quasi-periodic tiling. Europhys. Lett. 10, 483-488 (1989) · doi:10.1209/0295-5075/10/5/016
[99] Sire, C., Mosseri, R., Sadoc, J.-F.: Geometric study of a 2D tiling related to the octagonal quasiperiodic tiling. J. Phys. Fr. 55, 3463-3476 (1989) · doi:10.1051/jphys:0198900500240346300
[100] Sütő, A.: The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111, 409-415 (1987) · Zbl 0624.34017 · doi:10.1007/BF01238906
[101] Sütő, A.: Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 56, 525-531 (1989) · Zbl 0712.58046 · doi:10.1007/BF01044450
[102] Volberg, A.: On the dimension of harmonic measure of Cantor repellers. Mich. Math. J. 40, 239-258 (1993) · Zbl 0797.30022 · doi:10.1307/mmj/1029004751
[103] Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, Berlin (1981) · Zbl 0958.28011
[104] Walters, P.: A variational principle for the pressure of continuous transformations. Am. J. Math. 97, 937-971 (1975) · Zbl 0318.28007 · doi:10.2307/2373682
[105] Yessen, W.: Spectral analysis of tridiagonal Fibonacci Hamiltonians. J. Spectr. Theory 3, 101-128 (2013) · Zbl 1276.47036 · doi:10.4171/JST/39
[106] Yessen, W.: On the energy spectrum of 1D quantum Ising quasicrystal. Ann. Henri Poincaré 15, 419-467 (2014) · Zbl 1295.82008 · doi:10.1007/s00023-013-0251-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.