×

Eigenvalue spacings and dynamical upper bounds for discrete one-dimensional Schrödinger operators. (English) Zbl 1216.81071

Summary: We prove dynamical upper bounds for discrete one-dimensional Schrödinger operators in terms of various spacing properties of the eigenvalues of finite-volume approximations. We demonstrate the applicability of our approach by a study of the Fibonacci Hamiltonian.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)

References:

[1] S. Abe and H. Hiramoto, Fractal dynamics of electron wave packets in one-dimensional quasiperiodic systems , Phys. Rev. A 36 (1987), 5349-5352.
[2] J. M. Barbaroux, F. Germinet, and S. Tcheremchantsev, Fractal dimensions and the phenomenon of intermittency in quantum dynamics , Duke. Math. J. 110 (2001), 161-193. · Zbl 1012.81018 · doi:10.1215/S0012-7094-01-11015-6
[3] J. Breuer, Spectral and dynamical properties of certain random Jacobi matrices with growing parameters , Trans. Amer. Math. Soc. 362 (2010), 3161-3182. · Zbl 1192.47027 · doi:10.1090/S0002-9947-10-04856-7
[4] J. M. Combes, “Connections between quantum dynamics and spectral properties of time-evolution operators” in Differential Equations with Applications to Mathematical Physics , Academic Press, Boston, 1993, 59-68. · Zbl 0797.35136 · doi:10.1016/S0076-5392(08)62372-3
[5] D. Damanik, Dynamical upper bounds for one-dimensional quasicrystals , J. Math. Anal. Appl. 303 (2005), 327-341. · Zbl 1077.81039 · doi:10.1016/j.jmaa.2004.08.038
[6] -, “Strictly ergodic subshifts and associated operators” in Spectral Theory and Mathematical Physics: A Fetschrift in Honor of Barry Simon’s 60th Birthday , Proc. Sympos. Pure Math. 76 , American Math. Soc., Providence, 2007, 505-538. · Zbl 1130.82017
[7] D. Damanik and S. Tcheremchantsev, Power-Law bounds on transfer matrices and quantum dynamics in one dimension , Commun. Math. Phys. 236 (2003), 513-534. · Zbl 1033.81032 · doi:10.1007/s00220-003-0824-6
[8] -, Scaling estimates for solutions and dynamical lower bounds on wavepacket spreading , J. Anal. Math. 97 (2005), 103-131. · Zbl 1132.81018 · doi:10.1007/BF02807404
[9] -, Upper bounds in quantum dynamics , J. Amer. Math. Soc. 20 (2007), 799-827. · Zbl 1114.81036 · doi:10.1090/S0894-0347-06-00554-6
[10] -, Quantum dynamics via complex analysis methods: General upper bounds without time-averaging and tight lower bounds for the strongly coupled Fibonacci Hamiltonian , J. Funct. Anal. 255 (2008), 2872-2887. · Zbl 1153.81011 · doi:10.1016/j.jfa.2008.08.010
[11] P. Deift and B. Simon, Almost periodic Schrödinger operators, III: The absolutely continuous spectrum in one dimension , Commun. Math. Phys. 90 (1983), 389-411. · Zbl 0562.35026 · doi:10.1007/BF01206889
[12] R. Del-Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum, IV: Hausdorff dimensions, rank one perturbations, and localization , J. Anal. Math. 69 (1996), 153-200. · Zbl 0908.47002 · doi:10.1007/BF02787106
[13] J. T. Edwards and D. J. Thouless, Numerical studies of localization in disordered systems , J. Phys. C 5 (1972), 807-820.
[14] T. Geisel, R. Ketzmerick, and G. Petschel, “Unbounded quantum diffusion and a new class of level statistics” in Quantum Chaos–Quantum Measurement, (Copenhagen, 1991) , NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 358 , Kluwer, Dordrecht, 1992, 43-59.
[15] F. Germinet, A. Kiselev, and S. Tcheremchantsev, Transfer matrices and transport for Schrödinger operators , Ann. Inst. Fourier (Grenoble) 54 (2004), 787-830. · Zbl 1074.81019 · doi:10.5802/aif.2034
[16] I. Guarneri, Spectral properties of quantum diffusion on discrete lattices , Europhys. Lett. 10 (1989), 95-100.
[17] -, On an estimate concerning quantum diffusion in the presence of a fractal spectrum , Europhys. Lett. 21 (1993), 729-733.
[18] I. Guarneri and H. Schulz-Baldes, Lower bounds on wave packet propagation by packing dimensions of spectral measures , Math. Phys. Electron. J. 5 (1999), Paper 1, 16 pp. · Zbl 0910.47059
[19] -, Upper bounds for quantum dynamics governed by Jacobi matrices with self-similar spectra , Rev. Math. Phys. 11 (1999), 1249-1268. · Zbl 0969.81018 · doi:10.1142/S0129055X99000398
[20] -, Intermittent lower bounds on quantum diffusion , Lett. Math. Phys. 49 (1999), 317-324. · Zbl 1001.81019 · doi:10.1023/A:1007610717491
[21] H. Hiramoto and S. Abe, Dynamics of an electron in quasiperiodic systems. I. Fibonacci model , J. Phys. Soc. Japan 57 (1988), 230-240.
[22] S. Jitomirskaya and H. Schulz-Baldes, Upper bounds on wavepacket spreading for random Jacobi matrices , Commun. Math. Phys. 273 (2007), 601-618. · Zbl 1144.82035 · doi:10.1007/s00220-007-0252-0
[23] R. Killip, A. Kiselev, and Y. Last, Dynamical upper bounds on wavepacket spreading , Amer. J. Math. 125 (2003), 1165-1198. · Zbl 1053.81020 · doi:10.1353/ajm.2003.0031
[24] A. Kiselev and Y. Last, Solutions, spectrum and dynamics for Schrödinger operators on infinite domains , Duke Math. J. 102 (2000), 125-150. · Zbl 0951.35033 · doi:10.1215/S0012-7094-00-10215-3
[25] H. Kunz and B. Souillard, Sur le spectre des operateurs aux differences finies aleatoires , Commun. Math. Phys. 78 (1980), 201-246. · Zbl 0449.60048 · doi:10.1007/BF01942371
[26] Y. Last, Zero measure spectrum for the almost Mathieu operator , Commun. Math. Phys. 164 (1994), 421-432. · Zbl 0814.11040 · doi:10.1007/BF02101708
[27] -, Quantum dynamics and decompositions of singular continuous spectra , J. Funct. Anal. 142 (1996), 406-445. · Zbl 0905.47059 · doi:10.1006/jfan.1996.0155
[28] Y. Last and B. Simon, Fine structure of the zeros of orthogonal polynomials, IV: A priori bounds and clock behavior , Comm. Pure Appl. Math. 61 (2008), 486-538. · Zbl 1214.42044 · doi:10.1002/cpa.20185
[29] M. Reed and B. Simon, Methods of Modern Mathematical Physics, III: Scattering Theory , Academic Press, New York, 1979. · Zbl 0405.47007
[30] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices , Math. Surveys Monogr. 72 , Amer. Math. Soc., Providence, 2000. · Zbl 1056.39029
[31] D. J. Thouless, Electrons in disordered systems and the theory of localization , Phys. Rep. 13 (1974), 93-142.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.