×

Some remarks on discrete aperiodic Schrödinger operators. (English) Zbl 1101.39301

Summary: We consider Schrödinger operators on \(l^2(\mathbb{Z}^v )\) with deterministic aperiodic potential and Schrödinger operators on the \(l^2\)-space of the set of vertices of Penrose tilings and other aperiodic self-similar tilings. The operators on \(l^2(\mathbb{Z}^v )\) fit into the formalism of ergodic random Schrödinger operators. Hence, their Lyapunov exponent, integrated density of states, and spectrum are almost-surely constant. We show that they are actually constant: the Lyapunov exponent for one-dimensional Schrödinger operators with potential defined by a primitive substitution, the integrated density of states, and the spectrum in arbitrary dimension if the system is strictly ergodic. We give examples of strictly ergodic Schrödinger operators that include several kinds of ldquoalmost-periodicrdquo operators that have been studied in the literature. For Schrödinger operators on Penrose tilings we prove that the integrated density of states exists and is independent of boundary conditions and the particular Penrose tiling under consideration.

MSC:

39A12 Discrete version of topics in analysis
52C20 Tilings in \(2\) dimensions (aspects of discrete geometry)
82B05 Classical equilibrium statistical mechanics (general)
Full Text: DOI

References:

[1] U. Mizutani, Y. Sakabe, T. Shibuya, K. Kishi, K. Kimura, and S. Takeuchi, Electron transport properties of thermodynamically stable Al-Cu-Ru icosahedral quasicrystals,J. Phys.: Cond. Matter 2:6169-6178 (1990). · doi:10.1088/0953-8984/2/28/007
[2] T. Klein, A. Gozlan, C. Berger, F. Cyrot-Lackmann, Y. Calvayrac, and A. Quivy, Anomalous transport properties in pure AlCuFe icosahedral phases of high structural quality,Europhys. Lett. 13:129-134 (1990). · doi:10.1209/0295-5075/13/2/006
[3] B. D. Biggs, S. J. Poon, and N. R. Munirathnam, table Al-Cu-Ru icosahedral crystals: A new class of electronic alloys,Phys. Rev. Lett. 65:2700-2703 (1990). · doi:10.1103/PhysRevLett.65.2700
[4] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetric,Phys. Rev. Lett. 53:1951-1953 (1984). · doi:10.1103/PhysRevLett.53.1951
[5] J. Bellisard, Almost periodicity in solid state physics and C*-algebras, inThe Harald Bohr Centenary, C. Berg and F. Flugede, eds.,Dansk. Vid. Selsk. Mat.-Fys. Medd. 42(3):35-75 (1989).
[6] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon,Schr?dinger Operators?with Application to Quantum Mechanics and Global Geometry (Springer-Verlag, Berlin, 1987). · Zbl 0619.47005
[7] R. Carmona and J. Lacroix,Spectral Theory of Random Schr?dinger Operators (Birkh?user, Basel, 1990). · Zbl 0717.60074
[8] L. Pastur and A. Figotin,Spectra of Random and Almost-Periodic Operators (Springer-Verlag, Berlin, 1992). · Zbl 0752.47002
[9] M. Kohmoto and B. Sutherland, Electronic states on a Penrose lattice,Phys. Rev. Lett. 56:2740-2743 (1986). · doi:10.1103/PhysRevLett.56.2740
[10] M. Quefl?lec,Substitution Dynamical Systems?Spectral Analysis, Lect. Notes in Math. 1294 (Springer, 1987).
[11] F. M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length,Z. Wahr. Verw. Geb. 41:221-239 (1978). · Zbl 0348.54034 · doi:10.1007/BF00534241
[12] A. Hof, Quasicrystals, aperiodicity and lattice systems, Thesis, University of Groningen, The Netherlands (1992).
[13] W. F. Lunnon and P. A. B. Pleasants, Quasicrystallographic tilings,J. Math. Pures Appl. 66:217-263 (1987).
[14] B. Gr?nbaum and G. C. Shephard,Tilings and Patterns (Freeman, 1987). · Zbl 0601.05001
[15] N. G. de Bruijn, Algebraic theory of Penrose’s non-periodic tilings of the plane. I,Ned. Akad. Wetensch. Proc. A 84:39-52 (1981) (=Indag. Math. 84:39-52.
[16] N. G. de Bruijn, Algebraic theory of Penrose’s non-periodic tilings of the plane. II,Ned. Akad. Wetensch. Proc. A 84:53-66 (1981) (=Indag. Math. 84:53-66).
[17] N. G. de Bruijn, Updown generation of Penrose tilings,Indag. Math. N. S. 1:201-220 (1990). · Zbl 0716.52005 · doi:10.1016/0019-3577(90)90005-8
[18] C. P. M. Geerse and A. Hof, Lattice gas models on self-similar aperiodic tilings,Rev. Math. Phys. 3:163-221 (1991). · Zbl 0743.60115 · doi:10.1142/S0129055X91000072
[19] D. W. Robinson and D. Ruelle, Mean entropy of states in classical statistical mechanics,Commun. Math. Phys. 5:288-300 (1967). · Zbl 0144.48205 · doi:10.1007/BF01646480
[20] M. E. Fisher, The free energy of a macroscopic system,Arch. Rat. Mech. 17:377-410 (1964). · doi:10.1007/BF00250473
[21] J. Avron and B. Simon, Almost periodic Schr?dinger operators II. The integrated density of states,Duke Math. J. 50:369-391 (1983). · Zbl 0544.35030 · doi:10.1215/S0012-7094-83-05016-0
[22] J. Bellisard, A. Bovier, and J.-M. Ghez, Spectral properties of a tight binding Hamiltonian with period doubling potential,Commun. Math. Phys. 135:379-399 (1991). · Zbl 0726.58038 · doi:10.1007/BF02098048
[23] A. Bovier and J.-M. Ghez, Spectral properties of one-dimensional Schr?dinger operators with potentials generated by substitutions, Preprint CNRS Luminy (1992).
[24] P. Walters, Unique ergodicity and random matrix products, inLyapunov Exponents ? Proceedings, Bremen, 1984, L. Arnold and V. Wihstutz, eds., Lect. Notes in Math. 1186 (Springer-Verlag, Berlin, 1986), pp. 37-55.
[25] M. Kohmoto and B. Sutherland, Electronic and vibrational modes on a Penrose lattice: Localized states and band structure,Phys. Rev. B 34:3849-3853 (1986). · doi:10.1103/PhysRevB.34.3849
[26] B. Sutherland, Self-similar ground state wave function for electrons on a two-dimensional Penrose lattice,Phys. Rev. B 34:3904-3909 (1986). · doi:10.1103/PhysRevB.34.3904
[27] T. Odagaki and D. Nguyen, Electronic and vibrational spectra of two-dimensional quasicrystals,Phys. Rev. B 33:2184-2190 (1986); Erratum,Phys. Rev. B 34:5929-5930 (1986). · doi:10.1103/PhysRevB.33.2184
[28] M. Arai, T. Tokihiro, and T. Fujiwara, Strictly localized states on a two-dimensional Penrose lattice,Phys. Rev. B 38:1621-1626 (1988). · doi:10.1103/PhysRevB.38.1621
[29] Y. Liu and P. Ma, Electronic properties of two-dimensional quasicrystals with near-neighbour interactions,Phys. Rev. B 43:1378-1384 (1991). · doi:10.1103/PhysRevB.43.1378
[30] J. A. Ashraff, J.-M. Luck, and R. B. Stinchcombe, Dynamical properties of two-dimensional quasicrystals,Phys. Rev. B 41:4314-4329 (1990). · doi:10.1103/PhysRevB.41.4314
[31] V. G. Benza and C. Sire, Band spectrum of the octagonal quasicrystal: Finite measure, gaps, and chaos,Phys. Rev. B 44:10343-10345 (1991). · doi:10.1103/PhysRevB.44.10343
[32] B. Passaro, C. Sire, and V. G. Benza, Anomalous diffusion and conductivity in octagonal tiling models,Phys. Rev. B 46:13751-13755 (1992). · doi:10.1103/PhysRevB.46.13751
[33] R. A. Horn and C. R. Johnson,Matrix Analysis (Cambridge University Press, Cambridge, 1985). · Zbl 0576.15001
[34] G. A. Mezincescu, Lifschitz singularities for periodic operators plus random potentials,J. Stat. Phys. 49:1181-1190 (1987). · Zbl 0971.82508 · doi:10.1007/BF01017565
[35] H. Tsunetsugu, F. Fujiwara, K. Ueda, and T. Tokihiro, Electronic properties of the Penrose lattice. I. Energy spectrum and wave functions,Phys. Rev. B 43:8879-8891 (1991). · doi:10.1103/PhysRevB.43.8879
[36] P. Walters,An Introduction to Ergodic Theory (Springer-Verlag, Berlin, 1982). · Zbl 0475.28009
[37] N. Dunford and J. T. Schwartz,Linear Operators. Part II: Spectral Theory?Self-Adjoint Operators in Hilbert Space (Interscience, New York, 1963). · Zbl 0128.34803
[38] J. M. Luck, Cantor spectra and scaling of gap widths in deterministic aperiodic systems,Phys. Rev. B 39:5834-5849 (1989). · doi:10.1103/PhysRevB.39.5834
[39] J. Bellisard, A. Bovier, and J.-M. Ghez, Gap labelling theorems for one dimensional discrete Schr?dinger operators,Rev. Math. Phys. 4:1-37 (1992). · Zbl 0791.47009 · doi:10.1142/S0129055X92000029
[40] K. Ueda and H. Tsunetsugu, Energy spectrum and conductance of a two-dimensional quasicrystal,Phys. Rev. Lett. 58:1272-1275 (1987). · doi:10.1103/PhysRevLett.58.1272
[41] W. A. Schwalm and M. K. Schwalm, Extension theory for lattice Green functions,Phys. Rev. B 37:9524-9542 (1988). · doi:10.1103/PhysRevB.37.9524
[42] X. Fu, Y. Liu, B. Cheng, and D. Zheng, Spectral structure of two-dimensional Fibonacci quasilattices,Phys. Rev. B 43:10808-10814 (1991). · doi:10.1103/PhysRevB.43.10808
[43] J. Bellisard and E. Scoppola, The density of states for almost periodic Schr?dinger operators and the frequency module: A counter example,Commun. Math. Phys. 85:301-308 (1982). · Zbl 0505.46056 · doi:10.1007/BF01254461
[44] M. Kohmoto, L. P. Kadanoff, and C. Tang, Localization problem in one dimension: Mapping and escape,Phys. Rev. Lett. 50:1870-1872 (1983). · doi:10.1103/PhysRevLett.50.1870
[45] F. Delyon and D. Petritis, Absence of localization in a class of Schr?dinger operators with quasiperiodic potential,Commun. Math. Phys. 103:441-444 (1986). · Zbl 0604.35072 · doi:10.1007/BF01211759
[46] M. Casdagli, Symbolic dynamics for the renormalization map of a quasiperiodic Schr?dinger equation,Commun. Math. Phys. 107:295-318 (1986). · Zbl 0606.39004 · doi:10.1007/BF01209396
[47] J. Bellisard, B. Iochum, E. Scoppola, and D. Testard, Spectral properties of one dimensional quasi-crystals,Commun. Math. Phys. 125:527-543 (1989). · Zbl 0825.58010 · doi:10.1007/BF01218415
[48] J. Bellisard, B. Iochum, and D. Testard, Continuity properties of the electronic spectrum of 1d quasicrystals,Commun. Math. Phys. 141:353-380 (1991). · Zbl 0754.46049 · doi:10.1007/BF02101510
[49] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory (Springer-Verlag, Berlin, 1982).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.