×

Dynamical bounds for Sturmian Schrödinger operators. (English) Zbl 1201.81052

Summary: The Fibonacci Hamiltonian, that is a Schrödinger operator associated to a quasiperiodical Sturmian potential with respect to the golden mean has been investigated intensively in recent years. D. Damanik and S. Tcheremchantsev developed a method in [J. Anal. Math. 97, 103–131 (2006; Zbl 1132.81018)] and used it to exhibit a non trivial dynamical upper bound for this model. In this paper, we use this method to generalize to a large family of Sturmian operators dynamical upper bounds and show at sufficently large coupling anomalous transport for operators associated to irrational number with a generic Diophantine condition. As a counterexample, we exhibit a pathological irrational number which does not verify this condition and show its associated dynamic exponent only has ballistic bound. Moreover, we establish a global lower bound for the lower box counting dimension of the spectrum that is used to obtain a dynamical lower bound for bounded density irrational numbers.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
35Q41 Time-dependent Schrödinger equations and Dirac equations
82D20 Statistical mechanics of solids
37C55 Periodic and quasi-periodic flows and diffeomorphisms

Citations:

Zbl 1132.81018

References:

[1] DOI: 10.1007/BF01218415 · Zbl 0825.58010 · doi:10.1007/BF01218415
[2] Barbaroux J.-M., Duke. Math. J. 110 pp 161–
[3] DOI: 10.1016/S0076-5392(08)62372-3 · doi:10.1016/S0076-5392(08)62372-3
[4] DOI: 10.1016/j.jmaa.2004.08.038 · Zbl 1077.81039 · doi:10.1016/j.jmaa.2004.08.038
[5] DOI: 10.1007/s002200050295 · Zbl 0907.34073 · doi:10.1007/s002200050295
[6] DOI: 10.1007/s002200000203 · Zbl 1045.81024 · doi:10.1007/s002200000203
[7] DOI: 10.1007/s00208-006-0006-x · Zbl 1116.34066 · doi:10.1007/s00208-006-0006-x
[8] DOI: 10.1016/j.jfa.2004.05.007 · Zbl 1059.81055 · doi:10.1016/j.jfa.2004.05.007
[9] DOI: 10.1007/s00220-003-0824-6 · Zbl 1033.81032 · doi:10.1007/s00220-003-0824-6
[10] DOI: 10.1090/S0894-0347-06-00554-6 · Zbl 1114.81036 · doi:10.1090/S0894-0347-06-00554-6
[11] DOI: 10.1007/BF02807404 · Zbl 1132.81018 · doi:10.1007/BF02807404
[12] DOI: 10.1007/s00220-008-0451-3 · Zbl 1192.81151 · doi:10.1007/s00220-008-0451-3
[13] DOI: 10.5802/aif.2034 · Zbl 1074.81019 · doi:10.5802/aif.2034
[14] DOI: 10.1209/0295-5075/10/2/001 · doi:10.1209/0295-5075/10/2/001
[15] DOI: 10.1209/0295-5075/21/7/003 · doi:10.1209/0295-5075/21/7/003
[16] Guarneri I., Math. Phys. Electron. J. 5 pp 16–
[17] DOI: 10.1023/A:1007610717491 · Zbl 1001.81019 · doi:10.1023/A:1007610717491
[18] DOI: 10.1016/0378-4371(92)90426-Q · doi:10.1016/0378-4371(92)90426-Q
[19] DOI: 10.1007/BF02392827 · Zbl 0991.81021 · doi:10.1007/BF02392827
[20] DOI: 10.1007/s002200050830 · Zbl 1053.81031 · doi:10.1007/s002200050830
[21] DOI: 10.1007/s00220-002-0757-5 · Zbl 1013.82027 · doi:10.1007/s00220-002-0757-5
[22] Khinchin A. Ya., Continued Fractions (1964) · Zbl 0117.28601
[23] Kiselev A., Duke Math. J. 102 pp 125–
[24] DOI: 10.1353/ajm.2003.0031 · Zbl 1053.81020 · doi:10.1353/ajm.2003.0031
[25] DOI: 10.1006/jfan.1996.0155 · Zbl 0905.47059 · doi:10.1006/jfan.1996.0155
[26] DOI: 10.1017/CBO9781107326019 · doi:10.1017/CBO9781107326019
[27] DOI: 10.1023/A:1025537823884 · Zbl 1049.81023 · doi:10.1023/A:1025537823884
[28] DOI: 10.1007/BF01238906 · Zbl 0624.34017 · doi:10.1007/BF01238906
[29] DOI: 10.1016/S0022-1236(02)00066-6 · Zbl 1060.47070 · doi:10.1016/S0022-1236(02)00066-6
[30] DOI: 10.1007/s00220-004-1153-0 · Zbl 1100.47027 · doi:10.1007/s00220-004-1153-0
[31] Teschl G., Mathematical Surveys and Monographs 72, in: Jacobi Operators and Completely Integrable Nonlinear Lattices (2000) · Zbl 1056.39029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.