×

Spectral analysis of tridiagonal Fibonacci Hamiltonians. (English) Zbl 1276.47036

Let \({\mathcal A}=\{ a, b\}\) and let \({\mathcal A}^{\star}\) denote the set of finite words over \({\mathcal A}\). The Fibonacci substitution \(S: {\mathcal A} \rightarrow {\mathcal A}^{\star}\) is defined by \(S: a\mapsto ab\), \(b\mapsto a\). The map \(S\) is extended to \({\mathcal A}^{\star}\) and \({\mathcal A}^{\mathbb N, \mathbb Z}\). There exists a unique substitution sequence \(u\in {\mathcal A}^{\mathbb N}\) with some properties using some sequence of Fibonacci numbers. Let \(\hat u\) denote an arbitrary extension of \(u\) to a two-sided sequence in \({\mathcal A}^{\mathbb Z}\). Define \(\Omega =\{ \omega \in {\mathcal A}^{\mathbb Z} : \omega =\lim_{i \rightarrow \infty} T^{n_i} (\cap u)\), \(n_i \uparrow \infty \}\), \(T: {\mathcal A}^{\mathbb Z} \rightarrow {\mathcal A}^{\mathbb Z}\), where \([T(v)]_n =v_{n+1}\). To each \(\omega \in \Omega\) is associated a Jacobi operator.
Main results of the paper. Theorem 2.1. There exists \(\Sigma_{(p,q)} \subset\mathbb R\) such that, for all \(\omega \in \Omega\), \(\sigma (H_{\omega} )= \Sigma_{(p,q)}\). If \((p,q) \neq (1,0)\), then \(\Sigma_{(p,q)}\) is a Cantor set of zero Lebesque measure; it is purely singular continuous. Theorem 2.3. For all \((p,q) \neq (1,0)\), the spectrum \(\Sigma_ {(p,q)}\) is a multifractal. Existence of box-counting dimension, when it exists whether it coincides with Hausdorff dimension, is of interest. In the paper, there is a partial answer in this direction. A theorem is proved that states that the point-wise dimension of \(dN\) exists \(dN\)-almost everywhere.

MSC:

47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
47A10 Spectrum, resolvent

References:

[1] J. Avron, P. H. M. von Mouche, and B. Simon, On the measure of the spectrum for the almost Mathieu operator. Commun. Math. Phys. 132 (1990), 103-118. · Zbl 0724.47002 · doi:10.1007/BF02278001
[2] M. Baake, U. Grimm, and D. Joseph, Trace maps, invariants, and some of their applica- tions. Int. J. Mod. Phys. B 7 (1993), 1527-1550. · Zbl 0799.22011 · doi:10.1142/S021797929300247X
[3] M. Baake and J. A. G. Roberts, Reversing symmetry group of Gl.2; Z/ and PGl.2; Z/ matrices with connections to cat maps and trace maps. J. Phys. A, Math. Gen. 30 (1997), 1549-1573, 1997. · Zbl 1001.37500 · doi:10.1088/0305-4470/30/5/020
[4] E. Bedford, M. Lyubich, and J. Smillie, Polynomial diffeomorphisms of C2 IV: The measure of maximal entropy and laminar currents. Invent. Math. 112 (1993), 77-125. · Zbl 0792.58034 · doi:10.1007/BF01232426
[5] V. G Benza, Quantum Ising Quasi-Crystal. Europhys. Lett. (EPL) 8 (1989), 321-325.
[6] V. G. Benza and V. Callegaro, Phase transitions on strange sets: the Ising quasicrystal. J. Phys. A: Math. Gen. 23 (1990), 841-846.
[7] S. Cantat, Bers and Hénon, Painlevé and Schrödinger. Duke Math. J. 149 (2009), 411-460. · Zbl 1181.37068 · doi:10.1215/00127094-2009-042
[8] M. Casdagli, Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys. 107 (1986), 295-318. · Zbl 0606.39004 · doi:10.1007/BF01209396
[9] H. A. Ceccatto, Quasiperiodic Ising model in a transverse field: Analytical results. Phys. Rev. Lett. 62 (1989), 203-205.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.