×

On the mass-conserving Allen-Cahn approximation for incompressible binary fluids. (English) Zbl 1504.35225

Summary: This paper is devoted to the global well-posedness of two Diffuse Interface systems modeling the motion of an incompressible two-phase fluid mixture in presence of capillarity effects in a bounded smooth domain \(\Omega \subset \mathbb{R}^d\), \(d = 2, 3\). We focus on dissipative mixing effects originating from the mass-conserving Allen-Cahn dynamics with the physically relevant Flory-Huggins potential. More precisely, we study the mass-conserving Navier-Stokes-Allen-Cahn system for nonhomogeneous fluids and the mass-conserving Euler-Allen-Cahn system for homogeneous fluids. We prove existence and uniqueness of global weak and strong solutions as well as their property of separation from the pure states. In our analysis, we combine the energy and entropy estimates, a novel end-point estimate of the product of two functions, a new estimate for the Stokes problem with non-constant viscosity, and logarithmic type Gronwall arguments.

MSC:

35Q30 Navier-Stokes equations
35Q31 Euler equations
35Q35 PDEs in connection with fluid mechanics
76D27 Other free boundary flows; Hele-Shaw flows
76D45 Capillarity (surface tension) for incompressible viscous fluids
76T06 Liquid-liquid two component flows
35D35 Strong solutions to PDEs
35D30 Weak solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35K61 Nonlinear initial, boundary and initial-boundary value problems for nonlinear parabolic equations

References:

[1] Abels, H., On generalized solutions of two-phase flows for viscous incompressible fluids, Interfaces Free Bound., 9, 31-65 (2007) · Zbl 1124.35060
[2] Abels, H., On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194, 463-506 (2009) · Zbl 1254.76158
[3] Abels, H., (Non-)convergence of solutions of the convective Allen-Cahn equation, Partial Differ. Equ. Appl., 3, Article 1 pp. (2022) · Zbl 1513.76158
[4] Abels, H.; Depner, D.; Garcke, H., Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech., 15, 453-480 (2013) · Zbl 1273.76421
[5] Abels, H.; Garcke, H.; Grün, G., Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22, Article 1150013 pp. (2012) · Zbl 1242.76342
[6] Abels, H.; Lengeler, D., On sharp interface limits for diffuse interface models for two-phase flows, Interfaces Free Bound., 16, 395-418 (2014) · Zbl 1319.76058
[7] Abels, H.; Liu, Y.-N., Sharp interface limit for a Stokes/Allen-Cahn system, Arch. Ration. Mech. Anal., 229, 417-502 (2018) · Zbl 1394.35343
[8] Abels, H.; Schaubeck, S., Nonconvergence of the capillary stress functional for solutions of the convective Cahn-Hilliard equation, (Shibata, Y.; Suzuki, Y., Mathematical Fluid Dynamics, Present and Future. Mathematical Fluid Dynamics, Present and Future, Springer Proceedings in Mathematics & Statistics, vol. 183 (2016), Springer: Springer Tokyo), 3-23 · Zbl 1371.35209
[9] Abels, H.; Terasawa, Y., Non-homogeneous Navier-Stokes systems with order-parameter dependent stresses, Math. Methods Appl. Sci., 33, 1532-1544 (2010) · Zbl 1303.76008
[10] Alberti, S.; Dormann, D., Liquid-liquid phase separation in disease, Annu. Rev. Genet., 53, 171-194 (2019)
[11] Allen, S. M.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 1085-1095 (1979)
[12] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) · Zbl 1398.76051
[13] Blesgen, T., A generalization of the Navier-Stokes equation to two-phase flows, J. Phys. D, Appl. Phys., 32, 1119-1123 (1999)
[14] Bourgain, J.; Brézis, H., New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., 9, 277-315 (2007) · Zbl 1176.35061
[15] Boyer, F., Nonhomogeneous Cahn-Hilliard fluids, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 18, 225-259 (2001) · Zbl 1037.76062
[16] Bronsard, L.; Stoth, B., Volume-preserving mean curvature flow as a limit of nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28, 769-807 (1997) · Zbl 0874.35009
[17] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28, 258-267 (1958) · Zbl 1431.35066
[18] Cahn, J. W.; Hilliard, J. E., On spinodal decomposition, Acta Metall., 9, 795-801 (1961)
[19] Cao, C.-S.; Wu, J.-H., Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226, 1803-1822 (2011) · Zbl 1213.35159
[20] Chang, Y.-C.; Hou, T.-Y.; Merriman, B.; Osher, S., A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124, 449-464 (1996) · Zbl 0847.76048
[21] Chen, X.-F.; Hilhorst, D.; Logak, E., Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, Interfaces Free Bound., 12, 520-549 (2010) · Zbl 1219.35018
[22] Denisova, I. V.; Solonnikov, V. A., Classical solvability of the problem of the motion of two viscous incompressible fluids, Algebra Anal.. Algebra Anal., St. Petersburg Math. J., 7, 755-786 (1996), (Russian). Translation in · Zbl 0859.35093
[23] Ding, S.-J.; Li, Y.-H.; Luo, W.-L., Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1D, J. Math. Fluid Mech., 15, 335-360 (2013) · Zbl 1284.35307
[24] Du, Q.; Feng, X.-B., The phase field method for geometric moving interfaces and their numerical approximations, (Bonito, A.; Nochetto, R. H., Handbook of Numerical Analysis, vol. 21 (2020), Elsevier: Elsevier Amsterdam), 425-508 · Zbl 1455.35276
[25] Elliott, C. M., The Cahn-Hilliard model for the kinetics of phase separation, (Rodrigues, J. F., Mathematical Models for Phase Change Problems. Mathematical Models for Phase Change Problems, Internat. Ser. Numer. Math., vol. 88 (1989), Birkhäuser Verlag: Birkhäuser Verlag Basel), 35-73 · Zbl 0692.73003
[26] Fan, J.-S.; Li, F.-C., Regularity criteria for Navier-Stokes-Allen-Cahn and related systems, Front. Math. China, 14, 301-314 (2019) · Zbl 1458.76116
[27] Feireisl, E.; Rocca, E.; Petzeltová, E.; Schimperna, G., Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., 20, 1129-1160 (2010) · Zbl 1200.76155
[28] Feng, J.-J.; Liu, C.; Shen, J.; Yue, P.-T., A energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: advantages and challenges, (Calderer, M. T.; Terentjev, E. M., Modeling of Soft Matter, vol. IMA 141 (2005), Springer: Springer New York), 1-26 · Zbl 1181.76019
[29] Freistühler, H.; Kotschote, M., Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids, Arch. Ration. Mech. Anal., 224, 1-20 (2017) · Zbl 1366.35130
[30] Gal, C. G., On an inviscid model for incompressible two-phase flows with nonlocal interaction, J. Math. Fluid Mech., 18, 659-677 (2016) · Zbl 1359.35128
[31] Gal, C. G.; Grasselli, M., Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28, 1-39 (2010) · Zbl 1194.35056
[32] Gal, C. G.; Grasselli, M., Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math., Ser. B, 31, 655-678 (2010) · Zbl 1223.35079
[33] Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol. 1 (1994), Springer: Springer Berlin · Zbl 0949.35004
[34] Giacomin, G.; Lebowitz, J. L., Phase segregation dynamics in particle systems with long range interactions II: interface motion, SIAM J. Appl. Math., 58, 1707-1729 (1998) · Zbl 1015.82027
[35] Giga, M.-H.; Kirshtein, A.; Liu, C., Variational modeling and complex fluids, (Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), Springer: Springer Cham), 73-113
[36] Giorgini, A.; Grasselli, M.; Wu, H., The Cahn-Hilliard-Hele-Shaw system with singular potential, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 35, 1079-1118 (2018) · Zbl 1394.35356
[37] Giorgini, A.; Miranville, A.; Temam, R., Uniqueness and regularity for the Navier-Stokes-Cahn-Hilliard system, SIAM J. Math. Anal., 51, 2535-2574 (2019) · Zbl 1419.35160
[38] Golovaty, D., The volume-preserving motion by mean curvature as an asymptotic limit of reaction-diffusion equations, Q. Appl. Math., 55, 243-298 (1997) · Zbl 0878.35059
[39] He, J.-N.; Wu, H., Global well-posedness of a Navier-Stokes-Cahn-Hilliard system with chemotaxis and singular potential in 2D, J. Differ. Equ., 297, 47-81 (2021) · Zbl 1470.35362
[40] Heida, M.; Málek, J.; Rajagopal, K. R., On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework, Z. Angew. Math. Phys., 63, 145-169 (2012) · Zbl 1295.76002
[41] Heida, M.; Málek, J.; Rajagopal, K. R., On the development and generalizations of Allen-Cahn and Stefan equations within a thermodynamic framework, Z. Angew. Math. Phys., 63, 759-776 (2012) · Zbl 1295.35360
[42] Hošek, R.; Mácha, V., Weak-strong uniqueness for Allen-Cahn/Navier-Stokes system, Czechoslov. Math. J., 69, 837-851 (2019) · Zbl 1513.35454
[43] Hyman, A. A.; Weber, C. A.; Jülicher, F., Liquid-liquid phase separation in biology, Annu. Rev. Cell Dev. Biol., 30, 39-58 (2014)
[44] Hyon, Y.; Kwak, D.-Y.; Liu, C., Energetic variational approach in complex fluids: maximum dissipation principle, Discrete Contin. Dyn. Syst., 26, 1291-1304 (2010) · Zbl 1423.76380
[45] Jiang, J.; Li, Y.-H.; Liu, C., Two-phase incompressible flows with variable density: an energetic variational approach, Discrete Contin. Dyn. Syst., 37, 3243-3284 (2017) · Zbl 1361.35129
[46] Kotschote, M., Strong solutions of the Navier-Stokes equations for a compressible fluid of Allen-Cahn type, Arch. Ration. Mech. Anal., 206, 489-514 (2012) · Zbl 1257.35143
[47] Landau, L. D.; Lifshitz, E. M., Course of Theoretical Physics. Vol. 5: Statistical Physics (1968), Pergamon Press: Pergamon Press Oxford-Edinburgh-New York
[48] Li, Y.-H.; Ding, S.-J.; Huang, M.-X., Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities, Discrete Contin. Dyn. Syst., Ser. B, 21, 1507-1523 (2016) · Zbl 1346.76195
[49] Li, Y.-H.; Huang, M.-X., Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with different densities, Z. Angew. Math. Phys., 69, Article 68 pp. (2018) · Zbl 1394.35362
[50] Lin, F.-H., Some analytical issues for elastic complex fluids, Commun. Pure Appl. Math., 65, 893-919 (2012) · Zbl 1426.76041
[51] Lin, F.-H.; Liu, C.; Zhang, P., On hydrodynamics of viscoelastic fluids, Commun. Pure Appl. Math., 58, 1437-1471 (2005) · Zbl 1076.76006
[52] Lin, F.-H.; Zhang, P., On the initial-boundary value problem of the incompressible viscoelastic fluid system, Commun. Pure Appl. Math., 61, 539-558 (2008) · Zbl 1137.35414
[53] Lin, F.-H.; Zhang, P., Global small solutions to an MHD-type system: the three dimensional case, Commun. Pure Appl. Math., 67, 531-580 (2014) · Zbl 1298.35153
[54] Lin, F.-H.; Zhang, T., Global small solutions to a complex fluid model in three dimensional, Arch. Ration. Mech. Anal., 216, 905-920 (2015) · Zbl 1325.35167
[55] Lions, J.-L., On some questions in boundary value problems of mathematical physics, (Contemporary Developments in Continuum Mechanics and Partial Differential Equations. Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North-Holland Math. Stud., vol. 30 (1978), North-Holland: North-Holland Amsterdam-New York), 284-346 · Zbl 0404.35002
[56] Liu, C.; Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179, 211-228 (2003) · Zbl 1092.76069
[57] Liu, C.; Shen, J.; Yang, X.-F., Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density, J. Sci. Comput., 62, 601-622 (2015) · Zbl 1326.76064
[58] Liu, P.; Ouyang, Z.-G.; Chen, C.-J.; Yang, X.-F., A novel fully-decoupled, linear, and unconditionally energy-stable scheme of the conserved Allen-Cahn phase-field model of a two-phase incompressible flow system with variable density and viscosity, Commun. Nonlinear Sci. Numer. Simul., 107, Article 106120 pp. (2022) · Zbl 07469338
[59] Lowengrub, J.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond. A, 454, 2617-2654 (1998) · Zbl 0927.76007
[60] Ma, L.-N.; Chen, R.; Yang, X.-F.; Zhang, H., Numerical approximations for Allen-Cahn type phase field model of two-phase incompressible fluids with moving contact lines, Commun. Comput. Phys., 21, 867-889 (2017) · Zbl 1488.65266
[61] Mehta, S.; Zhang, J., Liquid-liquid phase separation drives cellular function and dysfunction in cancer, Nat. Rev. Cancer, 22, 239-252 (2022)
[62] Miranville, A., The Cahn-Hilliard Equation: Recent Advances and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 95 (2019), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1446.35001
[63] Modica, L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., 98, 123-142 (1987) · Zbl 0616.76004
[64] Moser, J., A sharp form of an inequality of N. Trudinger, Indiana Univ. Math. J., 20, 1077-1092 (1971) · Zbl 0203.43701
[65] Nochetto, R. H.; Salgado, A. J.; Walker, S. W., A diffuse interface model for electrowetting with moving contact lines, Math. Models Methods Appl. Sci., 24, 67-111 (2014) · Zbl 1280.35114
[66] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, vol. 153 (2002), Springer-Verlag: Springer-Verlag New York
[67] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[68] Plotnikov, P., Generalized solutions to a free boundary problem of motion of a non-Newtonian fluid, Sib. Math. J., 34, 704-716 (1993) · Zbl 0814.76007
[69] Prüss, J.; Simonett, G., On the two-phase Navier-Stokes equations with surface tension, Interfaces Free Bound., 12, 311-345 (2010) · Zbl 1202.35359
[70] Prüss, J.; Simonett, G., Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, vol. 105 (2016), Birkhäuser/Springer · Zbl 1435.35004
[71] Ren, X.-X.; Wu, J.-H.; Xiang, Z.-Y.; Zhang, Z.-F., Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267, 503-541 (2014) · Zbl 1295.35104
[72] Rubinstein, J.; Sternberg, P., Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48, 249-264 (1992) · Zbl 0763.35051
[73] Sethian, J. A.; Smereka, P., Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35, 341-372 (2003) · Zbl 1041.76057
[74] Shin, Y.; Brangwynne, C. P., Liquid phase condensation in cell physiology and disease, Science, 357, Article eaaf4328 pp. (2017)
[75] Strauss, W. A., On continuity of functions with values in various Banach spaces, Pac. J. Math., 19, 543-551 (1966) · Zbl 0185.20103
[76] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146-159 (1994) · Zbl 0808.76077
[77] Tanaka, N., Two-phase free boundary problem for viscous incompressible thermocapillary convection, Japan J. Mech., 21, 1-41 (1995) · Zbl 0845.35138
[78] Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 66 (1995), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 0833.35110
[79] Witterstein, G., Sharp interface limit of phase change flows, Adv. Math. Sci. Appl., 20, 585-629 (2011) · Zbl 1235.35215
[80] Wu, H., Well-posedness of a diffuse-interface model for two-phase incompressible flows with thermo-induced Marangoni effect, Eur. J. Appl. Math., 28, 380-434 (2017) · Zbl 1386.35360
[81] Wu, H.; Xu, X., Analysis of a diffuse-interface model for the mixture of two viscous incompressible fluids with thermo-induced Marangoni effects, Commun. Math. Sci., 11, 603-633 (2013) · Zbl 1302.35327
[82] Xu, X.; Zhao, L.-Y.; Liu, C., Axisymmetric solutions to coupled Navier-Stokes/Allen-Cahn equations, SIAM J. Math. Anal., 41, 2246-2282 (2010) · Zbl 1203.35191
[83] Yin, H.-Y.; Zhu, C.-J., Asymptotic stability of superposition of stationary solutions and rarefaction waves for 1D Navier-Stokes / Allen-Cahn system, J. Differ. Equ., 266, 7291-7326 (2019) · Zbl 1411.35034
[84] Yue, P.-T.; Feng, J.-J.; Liu, C.; Shen, J., A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515, 293-317 (2004) · Zbl 1130.76437
[85] Zhao, L.-Y.; Guo, B.-L.; Huang, H.-Y., Vanishing viscosity limit for a coupled Navier-Stokes/Allen-Cahn system, J. Math. Anal. Appl., 384, 232-245 (2011) · Zbl 1231.35185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.