×

Two-phase incompressible flows with variable density: an energetic variational approach. (English) Zbl 1361.35129

Summary: In this paper, we study a diffuse-interface model for two-phase incompressible flows with different densities. First, we present a derivation of the model using an energetic variational approach. Our model allows large density ratio between the two phases and moreover, it is thermodynamically consistent and admits a dissipative energy law. Under suitable assumptions on the average density function, we establish the global existence of a weak solution in the 3D case as well as the global well-posedness of strong solutions in the 2D case to an initial-boundary problem for the resulting Allen-Cahn-Navier-Stokes system. Furthermore, we investigate the longtime behavior of the 2D strong solutions. In particular, we obtain existence of a maximal compact attractor and prove that the solution will converge to an equilibrium as time goes to infinity.

MSC:

35Q30 Navier-Stokes equations
35Q35 PDEs in connection with fluid mechanics
76T99 Multiphase and multicomponent flows
35B40 Asymptotic behavior of solutions to PDEs
35B32 Bifurcations in context of PDEs
35A15 Variational methods applied to PDEs
35D30 Weak solutions to PDEs
35D35 Strong solutions to PDEs
Full Text: DOI

References:

[1] H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities,, Arch. Ration. Mech. Anal., 194, 463 (2009) · Zbl 1254.76158 · doi:10.1007/s00205-008-0160-2
[2] H. Abels, Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities,, Commun. Math. Phys., 289, 45 (2009) · Zbl 1165.76050 · doi:10.1007/s00220-009-0806-4
[3] H. Abels, Thermodynamically consistent diffuse interface models for incompressible two-phase flows with different densities,, preprint (2010)
[4] H. Abels, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities,, Math. Mod. Meth. Appl. Sic., 22 (2012) · Zbl 1242.76342 · doi:10.1142/S0218202511500138
[5] H. Abels, Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities,, J. Math. Fluid Mech., 15, 453 (2013) · Zbl 1273.76421 · doi:10.1007/s00021-012-0118-x
[6] H. Abels, On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility,, Ann. I. H. Poincaré- AN, 30, 1175 (2013) · Zbl 1347.76052 · doi:10.1016/j.anihpc.2013.01.002
[7] H. W. Alt, The entropy principle for interfaces. Fluids and solids,, Adv. Math. Sci. Appl., 19, 585 (2009) · Zbl 1194.35003
[8] D. M. Anderson, Diffuse-interface methods in fluid mechanics,, Annu. Rev. Fluid Mech., 30, 139 (1998) · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
[9] S. N. Antontsev, <em>Boundary Value Problems in Mechanics of Nonhomogeneous Fluids</em>,, Elsevier (1989)
[10] V. I. Arnold, <em>Mathematical Methods of Classical Mechanics</em>,, Springer-Verlag (1978) · Zbl 0386.70001
[11] F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation,, Asymptot. Anal., 20, 175 (1999) · Zbl 0937.35123
[12] F. Boyer, Nonhomogeneous Cahn-Hilliard fluids,, Ann. Inst. H. Poincaré -AN, 18, 225 (2001) · Zbl 1037.76062 · doi:10.1016/S0294-1449(00)00063-9
[13] P. M. Chaikin, <em>Principles of Condensed Matter Physics</em>,, Cambridge (1995)
[14] H. Ding, Diffusive interface model for incompressible two-phase flows with large density ratios,, J. Comp. Phys., 22, 2078 (2007) · Zbl 1388.76403
[15] S. Ding, Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1D,, J. Math. Fluid Mech., 15, 335 (2013) · Zbl 1284.35307 · doi:10.1007/s00021-012-0104-3
[16] D. A. Edwards, <em>Interfacial Transport Process and Rheology</em>,, Butterworths/Heinemann (1991)
[17] E. Feireisl, Convergence for semilinear degenerate parabolic equations in several space dimensions,, J. Dynam. Different. Equations, 12, 647 (2000) · Zbl 0977.35069 · doi:10.1023/A:1026467729263
[18] C. G. Gal, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D,, Ann. I. H. Poincaré-AN, 27, 401 (2010) · Zbl 1184.35055 · doi:10.1016/j.anihpc.2009.11.013
[19] C. G. Gal, Longtime behavior of a model for homogeneous incompressible two-phase flows,, Discrete Contin. Dyn. Syst. 28 (2010), 28, 1 (2010) · Zbl 1194.35056 · doi:10.3934/dcds.2010.28.1
[20] M. E. Gurtin, Two-phase binary fluids and immiscible fluids described by an order parameter,, Math. Models Methods Appl. Sci., 6, 815 (1996) · Zbl 0857.76008 · doi:10.1142/S0218202596000341
[21] A. Haraux, <em>Systèmes Dynamiques Dissipatifs et Applications</em>,, Masson (1991) · Zbl 0726.58001
[22] J. U. Kim, Weak solutions of an initial boundary value problem for an incompressible viscous fluid with nonnegative density,, SIAM J. Math. Anal., 18, 89 (1987) · Zbl 0626.35079 · doi:10.1137/0518007
[23] R. Kubo, The fluctuation-dissipation theorem,, Report on Progress in Physics (1966) · Zbl 0163.23102
[24] J. L. Lions, On some questions in boundary value problems of mathematical physics,, Contemporary developments in continuum mechanics and partial differential equations: Proceedings of the International Symposium on Continuum Mechanics and Partial Differential Equations, 285 (1977)
[25] C. Liu, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method,, Physica D, 179, 211 (2003) · Zbl 1092.76069 · doi:10.1016/S0167-2789(03)00030-7
[26] C. Liu, Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density,, J. Sci. Comput., 62, 601 (2015) · Zbl 1326.76064 · doi:10.1007/s10915-014-9867-4
[27] J. Lowengrub, Quasi-incompressible Cahn-Hilliard fluids and topological transitions,, P. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454, 2617 (1998) · Zbl 0927.76007 · doi:10.1098/rspa.1998.0273
[28] L. Onsager, Reciprocal relations in irreversible processes-I,, Phys. Rev., 37 (1931) · JFM 57.1168.10
[29] L. Onsager, Reciprocal relations in irreversible processes-II,, Phys. Rev., 38 (1931) · JFM 57.1168.10
[30] L. Rayleigh, Some general theorem relating to vibrations,, Proc. Lond. Math. Soc., 4, 357 (1873) · JFM 05.0537.01
[31] J. Shen, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities,, SIAM J. Sci. Comput., 32, 1159 (2010) · Zbl 1410.76464 · doi:10.1137/09075860X
[32] J. Shen, On mass conservation in phase field models for binary fluids,, Commun. Comput. Phys., 13, 1045 (2013) · Zbl 1373.76317 · doi:10.4208/cicp.300711.160212a
[33] W. Shen, Maximal attractor for the coupled Cahn-Hilliard equations,, Nonlinear Anal., 49, 21 (2002) · Zbl 1002.35025 · doi:10.1016/S0362-546X(00)00246-7
[34] J. Simon, Compact sets in the space \(L^p(0,T;B)\),, Annali di Matematica Pura ed Applicata, 146, 65 (1987) · Zbl 0629.46031 · doi:10.1007/BF01762360
[35] J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure,, SIAM J. Math. Anal., 21, 1093 (1990) · Zbl 0702.76039 · doi:10.1137/0521061
[36] K. Taira, <em>Analytic Semigroups and Semilinear Initial Boundary Value Problems</em>,, Cambridge Univ. Press (1995) · Zbl 0861.35001 · doi:10.1017/CBO9780511662362
[37] R. Temam, <em>Infinite-Dimensional Dynamical Systems in Mechanics and Physics</em>,, Applied Mathematics and Sciences, 68 (1988) · Zbl 0662.35001 · doi:10.1007/978-1-4684-0313-8
[38] H. Wu, Analysis of a diffuse-interface model for the binary viscous incompressible fluids with thermo-induced Marangoni effects,, Commun. Math. Sci., 11, 603 (2013) · Zbl 1302.35327 · doi:10.4310/CMS.2013.v11.n2.a15
[39] X. Xu, Axisymmetric solutions to coupled Navier-Stokes/Allen-Cahn equations,, SIAM J. Math. Anal., 41, 2246 (2010) · Zbl 1203.35191 · doi:10.1137/090754698
[40] S. Zheng, <em>Nonlinear Evolution Equations</em>,, Pitman series Monographs and Survey in Pure and Applied Mathematics (2004) · Zbl 1085.47058 · doi:10.1201/9780203492222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.