×

Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1D. (English) Zbl 1284.35307

Summary: In this paper, we investigate a coupled compressible Navier-Stokes/Allen-Cahn system which describes the motion of a mixture of two viscous compressible fluids. We prove the existence and uniqueness of global classical solution, the existence of weak solutions and the existence of unique strong solution of the Navier-Stokes/Allen-Cahn system in 1D for initial data \(\rho _{0}\) without vacuum states.

MSC:

35Q30 Navier-Stokes equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35D30 Weak solutions to PDEs
Full Text: DOI

References:

[1] Abels H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194, 463-506 (2009) · Zbl 1254.76158 · doi:10.1007/s00205-008-0160-2
[2] Abels H., Feireisl E.: On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57(2), 659-698 (2008) · Zbl 1144.35041 · doi:10.1512/iumj.2008.57.3391
[3] Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. In: Annual Review of Fluid Mechanics, vol. 30, pp. 139-165. Annual Reviews, Palo Alto (1998) · Zbl 1398.76051
[4] Boyer F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175-212 (1999) · Zbl 0937.35123
[5] Boyer F.: A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31, 41-68 (2002) · Zbl 1057.76060 · doi:10.1016/S0045-7930(00)00031-1
[6] Blesgen T.: A generalizaion of the Navier-Stokes equations to two-phase flow. J. Phys. D Appl. Phys. 32, 1119-1123 (1999) · doi:10.1088/0022-3727/32/10/307
[7] Ding S., Lin J., Wang C., Wen H.: Compressible hydrodynamic flow of liquid crystals in 1-D. DCDS 32(2), 539-563 (2012) · Zbl 1235.35156 · doi:10.3934/dcds.2012.32.539
[8] Feng, J.J., Liu, C., Shen, J., Yue, P.: An energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: advantages and challenges. In: Modeling of Soft Matter. IMA Vol. Math. Appl., vol. 141, pp. 1-26. Springer, New York (2005) · Zbl 1181.76019
[9] Feireisl E., Petzeltová H., Rocca E., Schimperna G.: Analysis of a phase-field model for two-phase compressible fluids. Math. Methods Appl. Sci. 31, 1972-1995 (2008) · Zbl 1155.35101 · doi:10.1002/mma.1016
[10] Gal C.G., Grasselli M.: Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Ann. I. H. Poincaré 27, 401-436 (2010) · Zbl 1184.35055 · doi:10.1016/j.anihpc.2009.11.013
[11] Gal C.G., Grasselli M.: Trajectory attractors for binary fluid mixtures in 3D. Chin. Ann. Math. Ser. B 31(5), 655-678 (2010) · Zbl 1223.35079 · doi:10.1007/s11401-010-0603-6
[12] Gal C.G., Grasselli M.: Instability of two-phase flows: a lower bound on the dimension of global attractor of the Cahn-Hilliard-Navier-Stokes system. Physica D 240, 629-635 (2011) · Zbl 1214.37055 · doi:10.1016/j.physd.2010.11.014
[13] Kotschote, M., Zacher, R.: Strong solutions in the dynamical theory of compressible fluid mixtures. Preprint. http://kops.ub.uni-konstanz.de/volltexte/2010/9886/ · Zbl 1329.76060
[14] Liu W., Bertozzi A.L., Kolokolnikov T.: Diffuse interface surface tension models in an expanding flow. Commun. Math. Sci. 10(1), 387-418 (2012) · Zbl 1272.35025
[15] Lowengrub J., Truskinovsky L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617-2654 (1998) · Zbl 0927.76007 · doi:10.1098/rspa.1998.0273
[16] Simon J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density and pressure. SIAM J. Math. Anal. 21, 1093-1117 (1990) · Zbl 0702.76039 · doi:10.1137/0521061
[17] Tan Z., Lim K.M., Khoo B.C.: An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model. J. Comput. Phys. 225, 1137-1158 (2007) · Zbl 1343.76050 · doi:10.1016/j.jcp.2007.01.019
[18] Witterstein G., Hoffmann K.H.: On the existence of a solution for a model of stem cell differentiation. Math. Methods Appl. Sci. 31, 1972-1995 (2008) · Zbl 1155.35101 · doi:10.1002/mma.1016
[19] Xu X., Zhao L., Liu C.: Axisymmetric solutions to coupled Navier-Stokes/Allen-Cahn equations. SIAM J. Math. Anal. 41(6), 2246-2282 (2010) · Zbl 1203.35191 · doi:10.1137/090754698
[20] Yang X., Feng J.J., Liu C., Shen J.: Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 218, 417-428 (2006) · Zbl 1158.76319 · doi:10.1016/j.jcp.2006.02.021
[21] Zhao L., Guo B., Huang H.: Vanishing viscosity limit for a coupled Navier-Stokes/Allen-Cahn system. J. Math. Anal. Appl. 384, 232-245 (2011) · Zbl 1231.35185 · doi:10.1016/j.jmaa.2011.05.042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.