×

An energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: advantages and challenges. (English) Zbl 1181.76019

Calderer, Maria-Carme T. (ed.) et al., Modeling of soft matter. Selected papers based on the presentation at the workshop, Minneapolis, MN, USA, September 27–October 1, 2004. New York, NY: Springer (ISBN 0-387-29167-9/hbk). The IMA Volumes in Mathematics and its Applications 141, 1-26 (2005).
Summary: The use of a phase field to describe interfacial phenomena has a long and fruitful tradition. There are two key ingredients to the method: the transformation of Lagrangian description of geometric motions to Eulerian description framework, and the employment of the energetic variational procedure to derive the coupled systems. Several groups have used this theoretical framework to approximate Navier-Stokes systems for two-phase flows. Recently, we have adapted the method to simulate interfacial dynamics in blends of microstructured complex fluids. This review has two objectives. The first is to give a more or less self-contained exposition of the method. We will briefly review the literature, present the governing equations and discuss a suitable numerical schemes, such as spectral methods. The second objective is to elucidate the subtleties of the model that need to be handled properly for certain applications. These points, rarely discussed in the literature, are essential for a realistic representation of the physics and a successful numerical implementation. The advantages and limitations of the method will be illustrated by numerical examples. We hope that this review will encourage readers whose applications may potentially benefit from a similar approach to explore it further.
For the entire collection see [Zbl 1087.74002].

MSC:

76A02 Foundations of fluid mechanics
76M30 Variational methods applied to problems in fluid mechanics
82D15 Statistical mechanics of liquids
Full Text: DOI

References:

[1] R.G. Larson. The Structure and Rheology of Complex Fluids. Oxford, New York,1999.
[2] West, J. L.; Weiss, R. A.; Ober, C. K.; Weiss, R. A.; Ober, C. K., Polymer-dispersed liquid crystals, Liquid-Crystalline Polymers, 475-495 (1990), Washington, D.C.: ACS, Washington, D.C.
[3] Tucker, C. L.; Moldenaers, P., Microstructural evolution in polymer blends, Ann. Rev. Fluid Mech., 34, 177-210 (2002) · Zbl 1047.76503 · doi:10.1146/annurev.fluid.34.082301.144051
[4] Sethian, J. A.; Smereka, P., Level set methods for fluid interfaces, Ann. Rev, Fluid Mech, 35, 341-372 (2003) · Zbl 1041.76057 · doi:10.1146/annurev.fluid.35.101101.161105
[5] Feng, J.; Sgalari, G.; Leal, L. G., A theory for flowing nematic polymers with orientational distortion, J. Rheoi, 44, 1085-1101 (2000) · doi:10.1122/1.1289278
[6] Cristini, V.; Blawzdziewicz, J.; Loewenberg, M., Drop breakup in three-dimensional viscous flows, Phys. Fluids, 10, 1781-1783 (1998) · doi:10.1063/1.869697
[7] Toose, E. M.; Geurts, B. J.; Kuerten, J. G.M., A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow, J. Non-Newtonian Fluid Mech., 60, 129-154 (1995) · doi:10.1016/0377-0257(95)01386-3
[8] Khayat, R. E., Three-dimensional boundary-element analysis of drop deformation for Newtonian and viscoelastic systems, Int. J. Num. Meth. Fluids, 34, 241-275 (2000) · Zbl 0994.76059 · doi:10.1002/1097-0363(20001015)34:3<241::AID-FLD57>3.0.CO;2-1
[9] Hu, H. H.; Patankar, N. A.; Zhu, M. Y., Direct numerical simulations of fluid-solid systems using the arbitrary lagrangian-eulerian technique, J. Comput. Phys., 169, 427-462 (2001) · Zbl 1047.76571 · doi:10.1006/jcph.2000.6592
[10] Ambravaneswaran, B.; Wilkes, E. D.; Basaran, O. A., Drop formation from a capillary tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops, Phys. Fluids, 14, 2606-2621 (2002) · Zbl 1185.76030 · doi:10.1063/1.1485077
[11] Hooper, R. W.; de Almeida, V. F.; Macosko, C. W.; Derby, J. J., Transient polymeric drop extension and retraction in uniaxial extensional flows, J. Non-Newtonian Fluid Mech., 98, 141-168 (2001) · Zbl 1071.76004 · doi:10.1016/S0377-0257(01)00112-4
[12] Ramaswamy, S.; Leal, L. G., The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a Newtonian fluid, J. Non-Newtonian Fluid Mech., 85, 127-163 (1999) · Zbl 0973.76006 · doi:10.1016/S0377-0257(98)00212-2
[13] Ramaswamy, S.; Leal, L. G., The deformation of a Newtonian drop in the uniaxial extensional flow of a viscoelastic liquid. J, Non-Newtonian Fluid Mech., 88, 149-172 (1999) · Zbl 0974.76010 · doi:10.1016/S0377-0257(99)00010-5
[14] Li, J.; Renardy, Y., Numerical study of flows of two immiscible liquids at low Reynolds number, SIAM Review, 42, 417-439 (2000) · Zbl 0981.76062 · doi:10.1137/S0036144599354604
[15] Y. Renardy, M. Renardy, T. Chinyoka, D.B. Khismatullin, and J. Li. A viscoelastic vof-prost code for the study of drop deformation. Proc. 2004 ASME Heat Transfer/Fluids Engineering Summer Conference, ASME, HTFED2004-56114, 2004.
[16] Glimm, J.; Klingenberg, C.; McBryan, O.; Plohr, B.; Sharp, D.; Yaniv, S., Front tracking and two-dimensional Riemann problems, Adv. Appl. Math., 6, 259-290 (1985) · Zbl 0631.76068 · doi:10.1016/0196-8858(85)90014-4
[17] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput Phys., 100, 25-37 (1992) · Zbl 0758.76047 · doi:10.1016/0021-9991(92)90307-K
[18] Chang, Y. C.; Hou, T. Y.; Merriman, B.; Osher, S., A level set formulation of eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124, 449-464 (1996) · Zbl 0847.76048 · doi:10.1006/jcph.1996.0072
[19] Sethian, J. A., Level Set Methods and Fast Marching Methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science (1999), New York: Cambridge University Press, New York · Zbl 0973.76003
[20] Osher, S.; Fedkiw, R., Level set methods: An overview and some recent results, J. Comput. Phys., 169, 463-502 (2001) · Zbl 0988.65093 · doi:10.1006/jcph.2000.6636
[21] Lowengrub, J.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. Roy. Soc. Lond. A, 454, 2617-2654 (1998) · Zbl 0927.76007 · doi:10.1098/rspa.1998.0273
[22] van der Waals, J. D., The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, Verhandel Konink. Akad. Weten. Amsterdam, (Sect. 1), 1, 1-56 (1892) · JFM 24.0967.02
[23] van der Waals, J. D., The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, translation by j. s. rowlingson, J. Statist. Phys, 20, 197-244 (1979) · Zbl 1245.82006 · doi:10.1007/BF01011514
[24] Dunn, J.; Serrin, J., On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88, 2, 95-133 (1985) · Zbl 0582.73004 · doi:10.1007/BF00250907
[25] Joseph, D., Fluid dynamics of two miscible liquids with diffusion and gradient stresses, European J. Mech. B Fluids, 9, 6, 565-596 (1990)
[26] Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Mod. Phys., 49, 435-479 (1977) · doi:10.1103/RevModPhys.49.435
[27] Bray, A. J., Theory of phase-ording kinetics, Advances in Physics, 51, 2, 481-587 (2002) · doi:10.1080/00018730110117433
[28] Warren, J. A.; Boettinger, W. J., Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method, Acta Metall. Mater., 43, 689-703 (1995) · doi:10.1016/0956-7151(94)00285-P
[29] Karma, A., Phase-field formulation for quantitative modeling of alloy solidification, Phys. Rev. Lett., 87, 115701 (2001) · doi:10.1103/PhysRevLett.87.115701
[30] Poser, C. I.; Sanchez, I. C., Interfacial tension theory of low and high molecular weight liquid mixtures, Macromolecules, 14, 361-370 (1981) · doi:10.1021/ma50003a026
[31] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. III. nucleation in a two-component incompressible fluid, J. Chem. Phys., 31, 688-699 (1959) · doi:10.1063/1.1730447
[32] Lapena, A. M.; Glotzer, S. C.; Langer, S. A.; Liu, A. J., Effect of ordering on spinodal decomposition of liquid-crystal/polymer mixtures, Phys. Rev. E, 60, R29-R32 (1999) · doi:10.1103/PhysRevE.60.R29
[33] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30, 139-165 (1998) · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
[34] Jacqmin, D., Calculation of two-phase Navier-Stokes flows using phase-field modelling, J. Comput. Phys., 155, 96-127 (1999) · Zbl 0966.76060 · doi:10.1006/jcph.1999.6332
[35] Verschueren, M.; van de Vosse, F. N.; Meijer, H. E.H., Diffuse-interface modelling of thermocapillary flow instabilities in a hele-shaw cell. J, Fluid Mech., 434, 153-166 (2001) · Zbl 0971.76030 · doi:10.1017/S0022112001003561
[36] Badalassi, V. E.; Ceniceros, H. D.; Banerjee, S., Computation of multiphase systems with phase field model, J. Comput. Phys., 190, 371-397 (2003) · Zbl 1076.76517 · doi:10.1016/S0021-9991(03)00280-8
[37] Liu, C.; Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179, 211-228 (2003) · Zbl 1092.76069 · doi:10.1016/S0167-2789(03)00030-7
[38] Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids, 31, 41-68 (2002) · Zbl 1057.76060 · doi:10.1016/S0045-7930(00)00031-1
[39] Qian, T.; Wang, X.-P.; Sheng, P., Generalized navier boundary condition for the moving contact line, Commun. Math. Sci., 1, 2, 333-341 (2003) · Zbl 1160.76340
[40] Gurtin, M.; Polignone, D.; Vinals, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6, 6, 815-831 (1996) · Zbl 0857.76008 · doi:10.1142/S0218202596000341
[41] Yue, P.; Feng, J. J.; Liu, C.; Shen, J., A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515, 293-317 (2004) · Zbl 1130.76437 · doi:10.1017/S0022112004000370
[42] P. Yue, J.J. Feng, C. Liu, and J. Shen. Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. X Non-Newtonian Fluid Mech., accepted, 2005. · Zbl 1195.76120
[43] P. Yue, J.J. Feng, C. Liu, and J. Shen. Interfacial force and Marangoni flow on a nematic drop retracting in an isotropic fluid. J. Colloid Interface Sci., accepted, 2005.
[44] P. Yue, J.J. Feng, C. Liu, and J. Shen. Viscoelastic effects on drop deformation in steady shear. J. Fluid Mech., submitted, 2004. · Zbl 1082.76007
[45] P. Yue, J.J. Feng, C. Liu, and J. Shen. Transient drop deformation upon startup of shestr in viscoelastic fluids. Phys. Fluids, submitte, 2005. · Zbl 1188.76180
[46] P. Yue, J.J. Feng, C. Liu, and J. Shen. Heart-shaped bubbles rising in a nematic fluid, in preparation, 2005.
[47] S.R. de Groot and P. Mazur. Nonequilibrium Thermodynamics. North Holland, 1962. · Zbl 1375.82003
[48] C. Liu, J. Shen, J.J. Feng, and P. Yue. Variational approach in two-phase flows of complex fluids: transport and induced elastic stress. In A. Miranville, editor, Mathematical Models and Methods in Phase TVansitions,. Nova Publications, 2005.
[49] Liu, C.; Walkington, N. J., An eulerian description of fluids containing viscoelastic particles, Arch. Ration. Mech. Anal, 159, 3, 229-252 (2001) · Zbl 1009.76093 · doi:10.1007/s002050100158
[50] de Gennes, P. G.; Prost, J., The Physics of Liquid Crystals (1993), New York: Oxford, New York
[51] Liu, C.; Walkington, N. J., Approximation of liquid crystal flows, SIAM J. Numer. Anal., 37, 725-741 (2000) · Zbl 1040.76036 · doi:10.1137/S0036142997327282
[52] Rapini, A.; Popoular, M., Distortion d’une lamelle nematique sous champ magnetique conditions d’ancrage aux parois, J. Phys. (Paris) C, 30, 54-56 (1969)
[53] Liu, C.; Shen, J., On liquid crystal flows with free-slip boundary conditions, Dis. Cont. Dyn. Sys., 7, 307-318 (2001) · Zbl 1014.76005
[54] Shen, J., Efficient spectral-Galerkin method. II. direct solvers of second and fourth order equations by using Chebyshev polynomials, SIAM J. Sci. Comput, 16, 74-87 (1995) · Zbl 0840.65113 · doi:10.1137/0916006
[55] J.L. Guermond, P. Minev, and J. Shen. An overview of projection methods for incompressible flows. Comput Methods Appl. Mech. Eng., submitted, 2005. · Zbl 1122.76072
[56] Guermond, J. L.; Shen, J., A class of truly consistent splitting schemes for incompressible flows, J. Comput. Phys., 192, 262-276 (2003) · Zbl 1032.76529 · doi:10.1016/j.jcp.2003.07.009
[57] Shen, J., Efficient spectral-Galerkin method. I. direct solvers of second and fourth order equations by using Legendre polynomials, SI AM J. Sci. Comput., 15, 1489-1505 (1994) · Zbl 0811.65097 · doi:10.1137/0915089
[58] Shen, J., Efficient spectral-Galerkin method. III. polar and cylindrical geometries, SIAM J. Sci. Comput, 18, 1583-160 (1997) · Zbl 0890.65117 · doi:10.1137/S1064827595295301
[59] Zhang, X.; Padgett, R. S.; Basaran, O. A., Nonlinear deformation and breakup of stretching liquid bridges. J, Fluid Mech., 329, 207-245 (1996) · Zbl 0899.76133 · doi:10.1017/S0022112096008907
[60] Nobari, M. R.; Jan, Y.-J.; Tryggvason, G., Head-on collision of drops—a numerical investigation, Phys. Fluids, 8, 29-42 (1996) · Zbl 1023.76588 · doi:10.1063/1.868812
[61] Zdravkov, A. N.; Peters, G. W.M.; Meijer, H. E.H., Film drainage between two captive drops: PEO-water in silicon oil, J. Colloid Interface Sci., 266, 195-201 (2003) · doi:10.1016/S0021-9797(03)00466-1
[62] Bhakta, A.; Ruckenstein, E., Decay of standing foams: drainage, coalescence and collapse, Adv. Colloid Interface Sci., 70, 1-124 (1997) · doi:10.1016/S0001-8686(97)00031-6
[63] Pismen, L. M., Nonlocal diffuse interface theory of thin films and the moving contact line, Phys. Rev. E, 64, 021603 (2001) · doi:10.1103/PhysRevE.64.021603
[64] Bird, R. B.; Curtiss, D. F.; Armstrong, R. C.; Hassager, O., Dynamics of PolymericLiquids, Vol. 2. Kinetic Theory (1987), New York: Wiley, New York
[65] Marrucci, G.; Greco, F., The elastic constants of Maier-Saupe rodlike molecule nematics, Mol Cryst. Liq. Cryst., 206, 17-30 (1991) · doi:10.1080/00268949108037714
[66] Lin, F. H.; Liu, C., Nonparabolic dissipative systems, modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48, 501-537 (1995) · Zbl 0842.35084 · doi:10.1002/cpa.3160480503
[67] Lin, F. H.; Liu, C., Existence of solutions for the Ericksen-Leslie system, Arch. Rat. Mech. Anal, 154, 135-156 (2000) · Zbl 0963.35158 · doi:10.1007/s002050000102
[68] X. Yang, J.J. Feng, C. Liu, and J. Shen. Contraction and pinch-off phenomena of a liquid filament. J. Comput. Phys., submitted, 2005.
[69] Biben, T.; Misbah, C.; Leyrat, A.; Verdier, C., An advected-field approach to the dynamics of fluid interfaces, Europhys. Lett., 63, 623-629 (2003) · doi:10.1209/epl/i2003-00564-y
[70] Charles, G. E.; Mason, S. G., The coalescence of liquid drops with flat liquidliquid interfaces, J. Colloid Sci., 15, 236-267 (1960) · doi:10.1016/0095-8522(60)90026-X
[71] Ghosh, P.; Juvekar, V. A., Analysis of the drop rest phenomenon, Chem. Eng. Res. Design, 80, 715-728 (2002) · doi:10.1205/026387602320776795
[72] Ollivier-Gooch, C. F., Coarsening unstructured meshes by edge contraction, Int. J. Numer. Methods Eng., 57, 391-414 (2003) · Zbl 1062.76527 · doi:10.1002/nme.682
[73] Cristini, V.; Tan, Y. C., Theory and numerical simulation of droplet dynamics in complex flows — a review, Lab Chip, 4, 257-264 (2004) · doi:10.1039/b403226h
[74] van Sint Annaland, M.; Deen, N. G.; Kuipers, J. A.M., Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method, Chem. Eng. Set., 60, 2999-3011 (2005) · doi:10.1016/j.ces.2005.01.031
[75] Q. Du, C. Liu, and X. Wang. Retrieving topological information for phase field models. SI AM J. Appl. Math. accepted for publication, 2005. · Zbl 1114.74044
[76] do Carmo, M. P., Differential Geometry of Curves and Surfaces (1976), Englewood Cliffs, NJ: Prentice-Hall, Englewood Cliffs, NJ · Zbl 0326.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.