×

Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids. (English) Zbl 1366.35130

The authors derive the Navier-Stokes-Allen-Cahn (NSAC), Navier-Stokes-Cahn-Hilliard (NSCH) and Navier-Stokes-Korteweg (NSK) systems of equations starting from general two-phase fluid flows and they establish links between these systems. They indeed consider fluid flows described through the variations of \((\rho ,\theta ,\chi ,u)\) on \([0,T]\times \overline{\Omega }\) where \(\rho \) is the density of the fluid, \(\theta \) its temperature and \(u\) its mass-averaged velocity, and \(\chi \) denotes the concentration of one phase. Here \(\Omega \) is a domain of \(\mathbb{R}^{n}\). The authors introduce the Helmholtz and Gibbs energies for each phase and mixing Helmholtz and Gibbs energies taking the same value. They especially consider four classes of fluids for which either Raoult or Dalton law are valid and satisfying properties of the Gibbs energies of the two phases. The authors start with the Navier-Stokes-Allen-Cahn equations for which they write the classical conservations of mass, momentum and energy and for which they add an equation \(\partial _{t}(\rho \chi )+\nabla \cdot (\rho \chi u)-J=0\) which expresses the transformation between the two phases, \(J\) being a transformation rate. They then derive properties of this system and they derive the expressions of Ericksen’s stress tensor \(\mathbf{C}_{E}=-\nabla \chi \otimes \frac{\partial }{\partial \nabla \chi }(\rho G)\) and of the transformation rate \(J_{AC}=\frac{\theta }{\varepsilon }(-\rho \frac{ \partial }{\partial \chi }(\frac{1}{\theta }G)+\nabla \cdot (\rho \frac{ \partial }{\partial \nabla \chi }(\frac{1}{\theta }G))\) in terms of Gibbs energy. Changing the structure of the transformation rate, the authors then derive the Navier-Stokes-Cahn-Hilliard equations. Here they link their results to that obtained by J. Lowengrub and L. Truskinovsky in [Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 454, No. 1978, 2617–2654 (1998; Zbl 0927.76007)]. In this section, they finally derive the Navier-Stokes-Korteweg equations now considering an internal energy whose expression is related to the Helmholtz energy. Considering the case of two incompressible phases of different temperature-independent specific volumes, the authors prove that the NSAC or NSCH equations may be written as a special NSK system for appropriate choices of the Helmhotz energy and of the viscous stress. The paper ends with the derivation of energy balances in the isothermal case for the NSAC, NSCH and NSK systems.

MSC:

35Q35 PDEs in connection with fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35Q53 KdV equations (Korteweg-de Vries equations)
76T99 Multiphase and multicomponent flows

Citations:

Zbl 0927.76007
Full Text: DOI

References:

[1] Abels H., Feireisl E.: On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57, 659-698 (2008) · Zbl 1144.35041 · doi:10.1512/iumj.2008.57.3391
[2] Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with differrent densities. Math. Models Methods Appl. Sci. 22, 1150013 (2012) · Zbl 1242.76342
[3] Allen S.M., Cahn J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085-1095 (1979) · doi:10.1016/0001-6160(79)90196-2
[4] Benzoni-Gavage S.: Stability of subsonic planar phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 150, 23-55 (1999) · Zbl 0980.76023 · doi:10.1007/s002050050179
[5] Benzoni-Gavage S.: Stability of multidimensional phase transitions. Nonlinear Anal. T.M.A. 31, 243-263 (1998) · Zbl 0928.76015 · doi:10.1016/S0362-546X(96)00309-4
[6] Benzoni-Gavage S., Danchin R., Descombes S., Jamet D.: Structure of Korteweg models and stability of diffuse interfaces. Interfaces Free Bound. 7, 371-414 (2005) · Zbl 1106.35056 · doi:10.4171/IFB/130
[7] Blesgen T.: A generalisation of the Navier-Stokes equations to two-phase-flows. J. Phys. D Appl. Phys. 32, 1119-1123 (1999) · doi:10.1088/0022-3727/32/10/307
[8] Cahn J.W., Hilliard J.E.: Free energy of a non-uniform system I. Interfacial free energy. J. Chem. Phys. 28, 258-267 (1958) · Zbl 1431.35066
[9] Dunn J.E., Serrin J.: On the thermomechanics of interstitial working. Arch. Rational Mech. Anal. 88, 95-133 (1985) · Zbl 0582.73004 · doi:10.1007/BF00250907
[10] Ericksen J.L.: Liquid crystals with variable degree of orientation. Arch. Rational Mech. Anal. 113, 97-120 (1990) · Zbl 0729.76008 · doi:10.1007/BF00380413
[11] Feireisl E., Rocca E., Petzeltova H., Schimperna G.: Analysis of a phase-field model for two-phase compressible fluids. Math. Models Methods Appl. Sci. 20, 1129-1160 (2010) · Zbl 1200.76155 · doi:10.1142/S0218202510004544
[12] Freistühler H.: Phase transitions and traveling waves in compressible fluids. Arch. Rational Mech. Anal. 211, 189-204 (2014) · Zbl 1290.35200 · doi:10.1007/s00205-013-0682-0
[13] Freistühler H., Kotschote M.: Internal structure of dynamic phase-transition fronts in a fluid with two compressible or incompressible phases. Bull. Inst. Math. Acad. Sin. (N.S.) 10, 541-552 (2015) · Zbl 1329.76364
[14] Freistühler, H., Kotschote, M.: Models of two-phase fluid dynamics à la Allen-Cahn, Cahn-Hilliard, and \[{\ldots}\]… Korteweg! Conflu. Math. 7, 57-66 (2015) · Zbl 1353.76063
[15] Gurtin M.E., Polignone D., Vi’nals J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6, 815-831 (1996) · Zbl 0857.76008 · doi:10.1142/S0218202596000341
[16] Heida M., Malek J.: On compressible Korteweg fluid-like materials. Int. J. Eng. Sci. 48, 1313-1324 (2010) · Zbl 1231.76248 · doi:10.1016/j.ijengsci.2010.06.031
[17] Korteweg D.J.: Sur la forme que prennent les équations des mouvements des fluides si l’on tient compte des forces capillaires par des variations de densité. Arch. Néer. Sci. Exactes Sér. II 6, 1-24 (1901) · JFM 32.0756.02
[18] Kotschote M.: Strong solutions of the Navier-Stokes equations for a compressible fluid of Allen-Cahn type. Arch. Ration. Mech. Anal. 206, 489-514 (2012) · Zbl 1257.35143 · doi:10.1007/s00205-012-0538-z
[19] Kotschote M.: Strong well-posedness for a Korteweg-type model for the dynamics of a compressible non-isothermal fluid. J. Math. Fluid Mech. 12, 473-484 (2010) · Zbl 1270.76063 · doi:10.1007/s00021-009-0298-1
[20] Kotschote M.: Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25, 679-696 (2008) · Zbl 1141.76053 · doi:10.1016/j.anihpc.2007.03.005
[21] Kotschote M., Zacher R.: Strong solutions in the dynamical theory of compressible fluid mixtures. Math. Models Methods Appl. Sci. 25, 1217-1256 (2015) · Zbl 1329.76060 · doi:10.1142/S0218202515500311
[22] Lowengrub J., Truskinovsky L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617-2654 (1998) · Zbl 0927.76007 · doi:10.1098/rspa.1998.0273
[23] Truskinovsky, L.: Kinks versus shocks. In: Fosdick, R., Dunn, E., Slemrod, M. (eds.) Shock induced transitions and phase structures in general media. IMA Series in Mathematics and its Applications, vol. 52, pp. 185-229. Springer (1993) · Zbl 0818.76036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.