×

A diffuse interface model for electrowetting with moving contact lines. (English) Zbl 1280.35114

Summary: We introduce a diffuse interface model for the phenomenon of electrowetting on dielectric and present an analysis of the arising system of equations. Moreover, we study discretization techniques for the problem. The model takes into account different material parameters on each phase and incorporates the most important physical processes, such as incompressibility, electrostatics and dynamic contact lines; necessary to properly reflect the relevant phenomena. The arising nonlinear system couples the variable density incompressible Navier-Stokes equations for velocity and pressure with a Cahn-Hilliard type equation for the phase variable and chemical potential, a convection diffusion equation for the electric charges and a Poisson equation for the electric potential. Numerical experiments are presented, which illustrate the wide range of effects the model is able to capture, such as splitting and coalescence of droplets.

MSC:

35Q35 PDEs in connection with fluid mechanics
35M30 Mixed-type systems of PDEs
35Q30 Navier-Stokes equations
76D27 Other free boundary flows; Hele-Shaw flows
76T10 Liquid-gas two-phase flows, bubbly flows
76D45 Capillarity (surface tension) for incompressible viscous fluids

Software:

deal.ii

References:

[1] Abels, H.; Garcke, H.; Grün, G., Math. Models Methods Appl. Sci., 22, 1150013, 2012 · Zbl 1242.76342
[2] Adams, R. A.; Fournier, J. J. F., Sobolev Spaces, 140, 2003, Academic Press · Zbl 1098.46001
[3] Alt, H. W., Adv. Math. Sci. Appl., 19, 585, 2009 · Zbl 1194.35003
[4] Aminfar, H.; Mohammadpourfard, M., Comput. Methods Appl. Mech. Engrg., 198, 3852, 2009 · Zbl 1230.76045
[5] Aminfar, H.; Mohammadpourfard, M., Int. J. Comput. Fluid Dyn., 24, 143, 2010 · Zbl 1267.76091
[6] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Annu. Rev. Fluid Mech., 30, 139, 1998 · Zbl 1398.76051
[7] Aronov, D.; Molotskii, M.; Rosenman, G., Phys. Rev. B, 76, 035437, 2007
[8] W. Bangerth, R. Hartmann and G. Kanschat, deal. II Differential Equations Analysis Library, Technical Reference, http://www.dealii.org.
[9] Bangerth, W.; Hartmann, R.; Kanschat, G., ACM Trans. Math. Softw., 33, 24/1, 2007 · Zbl 1365.65248
[10] Bänsch, E.; Morin, P.; Nochetto, R. H., Numer. Math., 118, 197, 2011 · Zbl 1241.65031
[11] Berge, B., C. R. Acad. Sci. Paris, Sér. II, 317, 157, 1993
[12] Berge, B.; Peseux, J., Euro. Phys. J. E, 3, 159, 2000
[13] Billingham, J., Euro. J. Appl. Math., 17, 347, 2006 · Zbl 1201.76060
[14] Billingham, J., IMA J. Appl. Math., 73, 4, 2008 · Zbl 1139.76009
[15] Boyer, F., Ann. Inst. H. Poincaré Anal. Non Linéaire, 18, 225, 2001 · Zbl 1037.76062
[16] Boyer, F., Computers & Fluids, 31, 41, 2002
[17] Boyer, F., Transp. Porous Media, 82, 463, 2010
[18] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, 1991, Springer-Verlag · Zbl 0788.73002
[19] Buscaglia, G. C.; Ausas, R. F., Computer Methods Appl. Mech. Engrg., 200, 3011, 2011
[20] Caffarelli, L. A.; Muler, N. E., Arch. Rational Mech. Anal., 133, 129, 1995 · Zbl 0851.35010
[21] Cherfils, L.; Petcu, M.; Pierre, M., Disc. Contin. Dyn. Syst., 27, 1511, 2010 · Zbl 1204.65113
[22] Cho, S. K., Splitting a liquid droplet for electrowetting-based microfluidics, International Mechanical Engineering Congress and Exposition, 2011, ASME Press
[23] Cho, S. K.; Moon, H.; Kim, C.-J., J. Microelectromech. Syst., 12, 70, 2003
[24] Ciarlet, P.; Scheid, C., M2AN Math. Model. Numer. Anal., 44, 647, 2010 · Zbl 1193.78029
[25] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, 1978, North-Holland · Zbl 0383.65058
[26] F. Klingbeil, E. Campillo-Funollet and G. Grün, On modeling and simulation of electrokinetic phenomena in two-pahse flow with general mass densities, in preparation, 2011.
[27] Eck, C., Interfaces Free Bound, 11, 259, 2009
[28] Ern, A.; Guermond, J.-L., Theory and Practice of Finite Elements, 159, 2004, Springer-Verlag · Zbl 1059.65103
[29] Evans, L. C., Partial Differential Equations, 19, 1998, Amer. Math. Soc. · Zbl 0902.35002
[30] Fontelos, M. A.; Grün, G.; Jörres, S., SIAM J. Math. Anal., 43, 527, 2011 · Zbl 1228.35082
[31] Fontelos, M. A.; Kindelán, U., Quart. J. Mech. Appl. Math., 62, 465, 2009 · Zbl 1239.76035
[32] Gerbeau, J.-F.; Lelièvre, T., Comput. Methods Appl. Mech. Engrg., 198, 644, 2009 · Zbl 1229.76037
[33] Girault, V.; Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, 1986, Springer-Verlag · Zbl 0585.65077
[34] Gomez, H.; Hughes, T. J. R., J. Comput. Phys., 230, 5310, 2011 · Zbl 1419.76439
[35] Gong, J.Fan, S. K.Kim, C. J., Portable digital microfluidics platform with active but disposable lab-on-chip, 17th IEEE Int. Conf. Micro Electro Mechanical Systems (MEMS) (IEEE Press, 2004) pp. 355-358.
[36] G. Grün and F. Klingbeil, Two-phase flow with mass density contrast: Stable schemes for a thermodynamic consistent and frame-indifferent diffuse interface model, in preparation. · Zbl 1349.76210
[37] Guermond, J.-L.; Quartapelle, L., J. Comput. Phys., 165, 167, 2000 · Zbl 0994.76051
[38] Guermond, J.-L.; Salgado, A., J. Comput. Phys., 228, 2834, 2009 · Zbl 1159.76028
[39] Guillén-González, F.; Gutiérrez-Santacreu, J. V., Math. Comput., 77, 1495, 2008 · Zbl 1193.35153
[40] Hayes, R. A.; Feenstra, B. J., Nature, 425, 383, 2003
[41] Jacqmin, D., J. Fluid Mech., 402, 57, 2000 · Zbl 0984.76084
[42] Kamiya, D.; Horie, M., Contact Angle, Wettability and Adhesion, 2, 507, 2002
[43] F. Klingbeil, On convergent schemes for dynamic electrowetting, in preparation.
[44] Krupenkin, T.; Taylor, J. A., Nat. Commun., 2, 2011
[45] Lee, J., Sensors and Actuators, A-Phys., 95, 259, 2002
[46] Lide, Ed. D. R., Handbook of Chemistry and Physics, 82th edn. (CRC Press, 2002).
[47] Lippmann, G., Ann. Chim. Phys., 5, 494, 1875
[48] Liu, C.; Shen, J., Phys. D, 179, 211, 2003 · Zbl 1092.76069
[49] Lu, H.-W., J. Fluid Mech., 590, 411, 2007
[50] Monnier, J.; Benselama, A. M.; Cotoi, I., Int. J. Multiscale Comput. Engrg., 5, 417, 2007
[51] Monnier, J., SIAM J. Appl. Math., 69, 1477, 2009
[52] Mugele, F.; Baret, J., J. Phys.: Condens. Matter, 17, R705, 2005
[53] Onsager, L., Phys. Rev., 37, 405, 1931 · Zbl 0001.09501
[54] Prohl, A.; Schmuck, M., Numer. Math., 111, 591, 2009 · Zbl 1178.65106
[55] Prohl, A.; Schmuck, M., M2AN Math. Model. Numer. Anal., 44, 531, 2010 · Zbl 1247.76052
[56] Prüss, J.; Racke, R.; Zheng, S., Ann. Mat. Pura Appl. (4), 185, 627, 2006 · Zbl 1232.35081
[57] Qian, T.; Wang, X.-P.; Sheng, P., Commun. Comput. Phys., 1, 1, 2006 · Zbl 1115.76079
[58] Qian, T.; Wang, X.-P.; Sheng, P., J. Fluid Mech., 564, 333, 2006 · Zbl 1178.76296
[59] Roques-Carmes, T., J. Appl. Phys., 95, 4389, 2004
[60] Roques-Carmes, T., J. Appl. Phys., 96, 6267, 2004
[61] Saeki, F., Polym. Mater. Sci. Engrg., 85, 12, 2001
[62] Salgado, A. J., M2AN Math. Model. Numer. Anal., 2012
[63] Salgado, A. J., Arch. Numer. Softw., 2012
[64] Scheid, C.; Witomski, P., Math. Comput. Model., 49, 647, 2009 · Zbl 1165.76384
[65] Schmuck, M., Math. Models Methods Appl. Sci., 19, 993, 2009 · Zbl 1229.35215
[66] Shapiro, B., J. Appl. Phys., 93, 5794, 2003
[67] Shen, J.; Yang, X., Chin. Ann. Math. Ser. B, 31, 743, 2010 · Zbl 1400.65049
[68] Shen, J.; Yang, X., Disc. Contin. Dyn. Syst., 28, 1669, 2010 · Zbl 1201.65184
[69] Shen, J.; Yang, X., SIAM J. Sci. Comput., 32, 1159, 2010 · Zbl 1410.76464
[70] Shikhmurzaev, Y. D., Int. J. Multiphase Flow, 19, 589, 1993 · Zbl 1144.76452
[71] Shikhmurzaev, Y. D., Capillary Flows with Forming Interfaces, 2008, Chapman & Hall · Zbl 1165.76001
[72] Song, J., Microfluidics and Nanofluidics, 7, 75, 2009
[73] Walker, S. W.; Bonito, A.; Nochetto, R. H., Interfaces Free Bound., 12, 85, 2010 · Zbl 1189.78056
[74] Walker, S. W.; Shapiro, B.; Nochetto, R. H., Phys. Fluids, 21, 102103, 2009 · Zbl 1183.76554
[75] Wise, S. M.; Wang, C.; Lowengrub, J. S., SIAM J. Numer. Anal., 47, 2269, 2009 · Zbl 1201.35027
[76] Zeidler, E., Nonlinear Functional Analysis and its Applications. I, 1986, Springer-Verlag · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.