×

Nonconvergence of the capillary stress functional for solutions of the convective Cahn-Hilliard equation. (English) Zbl 1371.35209

Shibata, Yoshihiro (ed.) et al., Mathematical fluid dynamics, present and future. Tokyo, Japan, November 11–14, 2014. Tokyo: Springer (ISBN 978-4-431-56455-3/hbk; 978-4-431-56457-7/ebook). Springer Proceedings in Mathematics & Statistics 183, 3-23 (2016).
Summary: We show that the surface tension term \(-\varepsilon\operatorname{div}(\nabla c^\varepsilon\otimes\nabla c^\varepsilon)\) of the “model H” does generally not converge to the mean curvature functional of the interface as \(\varepsilon\searrow 0\), where \(c^\varepsilon\) is the solution to a convective Cahn-Hilliard equation with mobility constant converging to 0 too fast as \(\varepsilon\searrow 0\). In that case the motion of the interface is dominated by the convection term \(v\cdot\nabla c^\varepsilon\) of the convective Cahn-Hilliard equation.
For the entire collection see [Zbl 1361.76002].

MSC:

35Q35 PDEs in connection with fluid mechanics
35R35 Free boundary problems for PDEs
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D45 Capillarity (surface tension) for incompressible viscous fluids
Full Text: DOI

References:

[1] Abels, H.: Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Comm. Math. Phys. 289(1), 45–73 (2009) · Zbl 1165.76050 · doi:10.1007/s00220-009-0806-4
[2] Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194(2), 463–506 (2009) · Zbl 1254.76158 · doi:10.1007/s00205-008-0160-2
[3] Abels, H.: Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow. SIAM J. Math. Anal. 44(1), 316–340 (2012) · Zbl 1333.76079 · doi:10.1137/110829246
[4] Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150013, 40 (2012) · Zbl 1242.76342
[5] Abels, H., Lengeler, D.: On sharp interface limits for diffuse interface models for two-phase flows. Interfaces Free Bound. 16(3), 395–418 (2014) · Zbl 1319.76058 · doi:10.4171/IFB/324
[6] Abels, H., Röger, M.: Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(6), 2403–2424 (2009) · Zbl 1181.35343 · doi:10.1016/j.anihpc.2009.06.002
[7] Alikakos, N.D., Bates, P.W., Chen, X.: Convergence of the Cahn-Hilliard equation to the Hele-Shaw model. Arch. Rational Mech. Anal. 128(2), 165–205 (1994) · Zbl 0828.35105 · doi:10.1007/BF00375025
[8] Arnold, V.I.: Gewöhnliche Differentialgleichungen -. Springer DE, Berlin, 2. aufl. edition (2001)
[9] Chen, X.: Global asymptotic limit of solutions of the Cahn-Hilliard equation. J. Differential Geom. 44(2), 262–311 (1996) · Zbl 0874.35045 · doi:10.4310/jdg/1214458973
[10] Eck, C., Garcke, H., Knabner, P.: Mathematische Modellierung. Springer DE, Berlin, 2. überarb. aufl. edition (2011) · Zbl 1226.00031
[11] Hildebrandt, S.: Analysis 2. Springer DE, Berlin (2003) · Zbl 1112.26001 · doi:10.1007/978-3-642-18972-2
[12] Kwek, K.H.: On the Cahn-Hilliard type equation. Ph.D. thesis, Georgia Institute of Technology (1991)
[13] Schaubeck, S.: Sharp interface limits for diffuse interface models, Feb 2014. http://epub.uni-regensburg.de/29462/
[14] Walter, W.: Gewöhnliche Differentialgleichungen. Springer-Lehrbuch. [Springer Textbook], 7th edn. Springer, Berlin (2000). Eine Einführung. [An introduction] · Zbl 0697.34001 · doi:10.1007/978-3-642-57240-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.