×

The threefold way to quantum periods: WKB, TBA equations and \(q\)-Painlevé. (English) Zbl 07905047

Summary: We show that TBA equations defined by the BPS spectrum of \(5d\) \(\mathcal{N} =1\) \(SU(2)\) Yang-Mills on \(S^1\times \mathbb{R}^4\) encode the \(q\)-Painlevé \(\mathrm{III}_3\) equation. We find a fine-tuned stratum in the physical moduli space of the theory where solutions to TBA equations can be obtained exactly, and verify that they agree with the algebraic solutions to \(q\)-Painlevé. Switching from the physical moduli space to that of stability conditions, we identify two one-parameter deformations of the fine-tuned stratum, where the general solution of the q-Painlevé equation in terms of dual instanton partition functions continues to provide explicit TBA solutions. Motivated by these observations, we propose a further extensions of the range of validity of this correspondence, under a suitable identification of moduli. As further checks of our proposal, we study the behavior of exact WKB quantum periods for the quantum curve of local \(\mathbb{P}^1\times\mathbb{P}^1\).

MSC:

81Txx Quantum field theory; related classical field theories
14Jxx Surfaces and higher-dimensional varieties
81Qxx General mathematical topics and methods in quantum theory

References:

[1] D. Gaiotto, G. W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299, 163 (2010), doi:10.1007/s00220-010-1071-2. · Zbl 1225.81135 · doi:10.1007/s00220-010-1071-2
[2] N. Joshi, Discrete Painlevé equations, American Mathematical Society, Providence, USA, ISBN 9781470450380 (2019). · Zbl 1423.37003
[3] M. A. Bershtein and A. I. Shchechkin, q-deformed Painlevé τ-deformed conformal blocks, J. Phys. A: Math. Theor. 50, 085202 (2017), doi:10.1088/1751-8121/aa5572. · Zbl 1360.81264 · doi:10.1088/1751-8121/aa5572
[4] G. Bonelli, A. Grassi and A. Tanzini, Quantum curves and q-deformed Painlevé equations, Lett. Math. Phys. 109, 1961 (2019), doi:10.1007/s11005-019-01174-y. · Zbl 1431.39003 · doi:10.1007/s11005-019-01174-y
[5] M. Bershtein, P. Gavrylenko and A. Marshakov, Cluster integrable systems, q-Painlevé equations and their quantization, J. High Energy Phys. 02, 077 (2018), doi:10.1007/JHEP02(2018)077. · Zbl 1387.83078 · doi:10.1007/JHEP02(2018)077
[6] M. Jimbo, H. Nagoya and H. Sakai, CFT approach to the q-Painlevé VI equation, J. Inte-grab. Syst. 2, 1 (2017), doi:10.1093/integr/xyx009. · Zbl 1400.39008 · doi:10.1093/integr/xyx009
[7] Y. Matsuhira and H. Nagoya, Combinatorial expressions for the tau functions of q-painlevé v and iii equations, SIGMA 15, 074 (2019), doi:10.3842/SIGMA.2019.074. · Zbl 1423.39009 · doi:10.3842/SIGMA.2019.074
[8] M. Bershtein and A. Shchechkin, Painlevé equations from Nakajima-Yoshioka blowup re-lations, Lett. Math. Phys. 109, 2359 (2019), doi:10.1007/s11005-019-01198-4. · Zbl 1428.81127 · doi:10.1007/s11005-019-01198-4
[9] M. A. Bershtein, P. G. Gavrylenko and A. V. Marshakov, Cluster Toda chains and Nekrasov functions, Theor. Math. Phys. 198, 157 (2019), doi:10.1134/S0040577919020016. · Zbl 1421.81083 · doi:10.1134/S0040577919020016
[10] N. Seiberg and E. Witten, Electric -magnetic duality, monopole condensation, and con-finement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426, 19 (1994), doi:10.1016/0550-3213(94)90124-4. · Zbl 0996.81510 · doi:10.1016/0550-3213(94)90124-4
[11] N. Nekrasov, Five-dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531, 323 (1998), doi:10.1016/S0550-3213(98)00436-2. · Zbl 0961.81116 · doi:10.1016/S0550-3213(98)00436-2
[12] S. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B 497, 173 (1997), doi:10.1016/S0550-3213(97)00282-4. · Zbl 0935.81058 · doi:10.1016/S0550-3213(97)00282-4
[13] W.-Y. Chuang, D.-E. Diaconescu, J. Manschot, G. W. Moore and Y. Soibelman, Geo-metric engineering of (framed) BPS states, Adv. Theor. Math. Phys. 18, 1063 (2014), doi:10.4310/ATMP.2014.v18.n5.a3. · Zbl 1365.81092 · doi:10.4310/ATMP.2014.v18.n5.a3
[14] S. Alexandrov, J. Manschot, D. Persson and B. Pioline, Quantum hypermulti-plet moduli spaces in N = 2 string vacua: A review, in String-math 2012, American Mathematical Society, Providence, USA, ISBN 9780821894958 (2015), doi:10.1090/PSPUM/090/01523. · Zbl 1356.81186 · doi:10.1090/PSPUM/090/01523
[15] S. Alexandrov and B. Pioline, Heavenly metrics, BPS indices and twistors, Lett. Math. Phys. 111, 116 (2021), doi:10.1007/s11005-021-01455-5. · Zbl 1491.53063 · doi:10.1007/s11005-021-01455-5
[16] S. Alexandrov and B. Pioline, Conformal TBA for resolved conifolds, Ann. Henri Poincaré 23, 1909 (2021), doi:10.1007/s00023-021-01129-x. · Zbl 1495.14064 · doi:10.1007/s00023-021-01129-x
[17] T. Bridgeland, Geometry from Donaldson-Thomas invariants, (arXiv preprint) doi:10.48550/arXiv.1912.06504. · Zbl 1468.14078 · doi:10.48550/arXiv.1912.06504
[18] T. Bridgeland and I. A. B. Strachan, Complex hyperkähler structures defined by Donaldson-Thomas invariants, Lett. Math. Phys. 111, 54 (2021), doi:10.1007/s11005-021-01388-z. · Zbl 1475.14108 · doi:10.1007/s11005-021-01388-z
[19] D. Gaiotto, Opers and TBA, (arXiv preprint) doi:10.48550/arXiv.1403.6137. · doi:10.48550/arXiv.1403.6137
[20] T. Kawai and Y. Takei, Algebraic analysis of singular perturbation theory, American Math-ematical Society, Providence, USA, ISBN 9780821835470 (2005). · Zbl 1100.34004
[21] K. Iwaki and T. Nakanishi, Exact WKB analysis and cluster algebras, J. Phys. A: Math. Theor. 47, 474009 (2014), doi:10.1088/1751-8113/47/47/474009. · Zbl 1311.81113 · doi:10.1088/1751-8113/47/47/474009
[22] M. Aganagic, M. C. N. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum geometry of refined topological strings, J. High Energy Phys. 11, 019 (2012), doi:10.1007/JHEP11(2012)019. · Zbl 1397.83117 · doi:10.1007/JHEP11(2012)019
[23] M.-x. Huang, A. Klemm, J. Reuter and M. Schiereck, Quantum geometry of del Pezzo surfaces in the Nekrasov-Shatashvili limit, J. High Energy Phys. 02, 031 (2015), doi:10.1007/JHEP02(2015)031. · Zbl 1388.81551 · doi:10.1007/JHEP02(2015)031
[24] D. Gaiotto, G. W. Moore and A. Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234, 239 (2013), doi:10.1016/j.aim.2012.09.027. · Zbl 1358.81150 · doi:10.1016/j.aim.2012.09.027
[25] P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe Ansatz and non-linear integral equations, J. Phys. A: Math. Gen. 32, L419 (1999), doi:10.1088/0305-4470/32/38/102. · Zbl 0953.81016 · doi:10.1088/0305-4470/32/38/102
[26] V. V. Bazhanov, S. L. Lukyanov and A. B. Zamolodchikov, NoSpectral determinants for Schrodinger equation and Q operators of conformal field theoryne, J. Stat. Phys. 102, 567 (2001), doi:10.1023/A:1004838616921. · Zbl 0983.81019 · doi:10.1023/A:1004838616921
[27] T. Bridgeland, Riemann-Hilbert problems for the resolved conifold and non-perturbative partition functions, J. Differ. Geom. 115, 395 (2020), doi:10.4310/jdg/1594260015. · Zbl 1485.14103 · doi:10.4310/jdg/1594260015
[28] A. Grassi, Q. Hao and A. Neitzke, Exponential networks, WKB and topological string, SIGMA 19, 064 (2023), doi:10.3842/SIGMA.2023.064. · Zbl 07757106 · doi:10.3842/SIGMA.2023.064
[29] M. Alim, L. Hollands and I. Tulli, Quantum curves, resurgence and exact WKB, Symmetry Integr. Geom.: Methods Appl. 19, 009 (2023), doi:10.3842/SIGMA.2023.009. · Zbl 1515.81183 · doi:10.3842/SIGMA.2023.009
[30] N. Seiberg, Five dimensional SUSY field theories, non-trivial fixed points and string dy-namics, Phys. Lett. B 388, 753 (1996), doi:10.1016/S0370-2693(96)01215-4. · doi:10.1016/S0370-2693(96)01215-4
[31] D. R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483, 229 (1997), doi:10.1016/S0550-3213(96)00592-5. · Zbl 0925.81228 · doi:10.1016/S0550-3213(96)00592-5
[32] K. Intriligator, D. R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497, 56 (1997), doi:10.1016/S0550-3213(97)00279-4. · Zbl 0934.81061 · doi:10.1016/S0550-3213(97)00279-4
[33] M. R. Douglas, S. Katz and C. Vafa, Small instantons, del Pezzo surfaces and type I’ theory, Nucl. Phys. B 497, 155 (1997), doi:10.1016/S0550-3213(97)00281-2. · Zbl 0935.81057 · doi:10.1016/S0550-3213(97)00281-2
[34] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355, 466 (1995), doi:10.1016/0370-2693(95)00723-X. · Zbl 0997.81567 · doi:10.1016/0370-2693(95)00723-X
[35] E. J. Martinec and N. P. Warner, Integrable systems and supersymmetric gauge theory, Nucl. Phys. B 459, 97 (1996), doi:10.1016/0550-3213(95)00588-9. · Zbl 0996.37506 · doi:10.1016/0550-3213(95)00588-9
[36] S. Ruijsenaars, Relativistic toda systems, Commun. Math. Phys. 133, 217 (1990), doi:10.1007/BF02097366. · Zbl 0719.58019 · doi:10.1007/BF02097366
[37] C. Closset and M. Del Zotto, On 5d SCFTs and their BPS quivers. Part I: B-branes and brane tilings, Adv. Theor. Math. Phys. 26, 37 (2022), doi:10.4310/atmp.2022.v26.n1.a2. · Zbl 1514.81228 · doi:10.4310/atmp.2022.v26.n1.a2
[38] P. Longhi, Instanton particles and monopole strings in 5D SU(2) supersymmetric Yang-Mills theory, Phys. Rev. Lett. 126, 211601 (2021), doi:10.1103/PhysRevLett.126.211601. · doi:10.1103/PhysRevLett.126.211601
[39] F. Del Monte and P. Longhi, Quiver symmetries and wall-crossing invariance, Commun. Math. Phys. 398, 89 (2023), doi:10.1007/s00220-022-04515-6. · Zbl 1508.81946 · doi:10.1007/s00220-022-04515-6
[40] C. Closset and H. Magureanu, The U-plane of rank-one 4d N = 2 KK theories, SciPost Phys. 12, 065 (2022), doi:10.21468/SciPostPhys.12.2.065. · doi:10.21468/SciPostPhys.12.2.065
[41] S. Banerjee, P. Longhi and M. Romo, Exploring 5d BPS spectra with exponential networks, Ann. Henri Poincaré 20, 4055 (2019), doi:10.1007/s00023-019-00851-x. · Zbl 1426.81049 · doi:10.1007/s00023-019-00851-x
[42] S. Banerjee, P. Longhi and M. Romo, Exponential BPS graphs and D-brane counting on toric Calabi-Yau threefolds: Part II, (arXiv preprint) doi:10.48550/arXiv.2012.09769. · Zbl 1479.81042 · doi:10.48550/arXiv.2012.09769
[43] T. Bridgeland and D. Stern, Helices on del pezzo surfaces and tilting Calabi-Yau algebras, Adv. Math. 224, 1672 (2010), doi:10.1016/J.AIM.2010.01.018. · Zbl 1193.14022 · doi:10.1016/J.AIM.2010.01.018
[44] A. Klemm, W. Lerche, P. Mayr, C. Vafa and N. Warner, Self-dual strings and N = 2 supersymmetric field theory, Nucl. Phys. B 477, 746 (1996), doi:10.1016/0550-3213(96)00353-7. · Zbl 0925.81196 · doi:10.1016/0550-3213(96)00353-7
[45] K. Hori and C. Vafa, Mirror symmetry, in Visual symmetry, World Scientific, Singapore, ISBN 9789812835314 (2009), doi:10.1142/9789812835321_0001. · doi:10.1142/9789812835321_0001
[46] K. Hori, A. Iqbal and C. Vafa, D-branes and mirror symmetry, (arXiv preprint) doi:10.48550/arXiv.hep-th/0005247. · doi:10.48550/arXiv.hep-th/0005247
[47] K. Ueda and M. Yamazaki, Dimer models for parallelograms, (arXiv preprint) doi:10.48550/arXiv.math/0606548. · doi:10.48550/arXiv.math/0606548
[48] S. Franco, S. Lee, R.-K. Seong and C. Vafa, Brane brick models in the mirror, J. High Energy Phys. 02, 106 (2017), doi:10.1007/JHEP02(2017)106. · Zbl 1377.81139 · doi:10.1007/JHEP02(2017)106
[49] G. Beaujard, J. Manschot and B. Pioline, Vafa-Witten invariants from exceptional collec-tions, Commun. Math. Phys. 385, 101 (2021), doi:10.1007/s00220-021-04074-2. · Zbl 1478.14031 · doi:10.1007/s00220-021-04074-2
[50] R. Eager, S. A. Selmani and J. Walcher, Exponential networks and representations of quivers, J. High Energy Phys. 08, 063 (2017), doi:10.1007/JHEP08(2017)063. · Zbl 1381.81096 · doi:10.1007/JHEP08(2017)063
[51] S. Banerjee, P. Longhi and M. Romo, A-branes, foliations and localization, Ann. Henri Poincaré 24, 1077 (2022), doi:10.1007/s00023-022-01231-8. · Zbl 1522.81314 · doi:10.1007/s00023-022-01231-8
[52] G. Bonelli, F. Del Monte and A. Tanzini, BPS quivers of five-dimensional SCFTs, topological strings and q-Painlevé equations, Ann. Henri Poincaré 22, 2721 (2021), doi:10.1007/s00023-021-01034-3. · Zbl 1499.81083 · doi:10.1007/s00023-021-01034-3
[53] P. Yi, Witten index and threshold bound states of D-branes, Nucl. Phys. B 505, 307 (1997), doi:10.1016/S0550-3213(97)00486-0. · Zbl 0925.58105 · doi:10.1016/S0550-3213(97)00486-0
[54] Z. Duan, D. Ghim and P. Yi, 5D BPS quivers and KK towers, J. High Energy Phys. 02, 119 (2021), doi:10.1007/JHEP02(2021)119. · Zbl 1460.83080 · doi:10.1007/JHEP02(2021)119
[55] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invari-ants and cluster transformations, (arXiv preprint) doi:10.48550/arXiv.0811.2435. · doi:10.48550/arXiv.0811.2435
[56] C. Closset, M. Del Zotto and V. Saxena, Five-dimensional SCFTs and gauge the-ory phases: An M-theory/type IIA perspective, SciPost Phys. 6, 052 (2019), doi:10.21468/SciPostPhys.6.5.052. · doi:10.21468/SciPostPhys.6.5.052
[57] T. Bridgeland, Riemann-Hilbert problems from Donaldson-Thomas theory, Invent. Math. 216, 69 (2018), doi:10.1007/s00222-018-0843-8. · Zbl 1423.14309 · doi:10.1007/s00222-018-0843-8
[58] S. Garoufalidis, J. Gu and M. Mariño, Peacock patterns and resurgence in complex Chern-Simons theory, Res. Math. Sci. 10, 29 (2023), doi:10.1007/s40687-023-00391-1. · Zbl 07715597 · doi:10.1007/s40687-023-00391-1
[59] J. Gu and M. Mariño, Peacock patterns and new integer invariants in topological string theory, SciPost Phys. 12, 058 (2022), doi:10.21468/SciPostPhys.12.2.058. · doi:10.21468/SciPostPhys.12.2.058
[60] N. A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7, 831 (2003), doi:10.4310/ATMP.2003.v7.n5.a4. · Zbl 1056.81068 · doi:10.4310/ATMP.2003.v7.n5.a4
[61] N. A. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Birkhäuser, Boston, USA, ISBN 9780817640767 (2006), doi:10.1007/0-8176-4467-9_15. · Zbl 1233.14029 · doi:10.1007/0-8176-4467-9_15
[62] S. Banerjee, P. Longhi and M. Romo, Exponential BPS graphs and D-brane count-ing on toric Calabi-Yau threefolds: Part I, Commun. Math. Phys. 388, 893 (2021), doi:10.1007/s00220-021-04242-4. · Zbl 1479.81042 · doi:10.1007/s00220-021-04242-4
[63] O. Costin, Asymptotics and Borel summability, Chapman and Hall/CRC, New York, USA, ISBN 9780429141485 (2008), doi:10.1201/9781420070323. · doi:10.1201/9781420070323
[64] M. Alim, A. Saha, J. Teschner and I. Tulli, Mathematical structures of non-perturbative topological string theory: From GW to DT invariants, Commun. Math. Phys. 399, 1039 (2022), doi:10.1007/s00220-022-04571-y. · Zbl 1535.81189 · doi:10.1007/s00220-022-04571-y
[65] S. Garoufalidis and R. Kashaev, Resurgence of Faddeev’s quantum dilogarithm, in Topology and geometry, European Mathematical Society, Helsinki, Finland, ISBN 9783985470013 (2021), doi:10.4171/irma/33-1/14. · Zbl 1521.57007 · doi:10.4171/irma/33-1/14
[66] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and integrable hierarchies, Commun. Math. Phys. 261, 451 (2005), doi:10.1007/s00220-005-1448-9. · Zbl 1095.81049 · doi:10.1007/s00220-005-1448-9
[67] E. Witten, On background-independent open-string field theory, Phys. Rev. D 46, 5467 (1992), doi:10.1103/PhysRevD.46.5467. · doi:10.1103/PhysRevD.46.5467
[68] S. L. Shatashvili, Comment on the background independent open string theory, Phys. Lett. B 311, 83 (1993), doi:10.1016/0370-2693(93)90537-R. · doi:10.1016/0370-2693(93)90537-R
[69] A.-K. Kashani-Poor, The wave function behavior of the open topological string partition function on the conifold, J. High Energy Phys. 04, 004 (2007), doi:10.1088/1126-6708/2007/04/004. · doi:10.1088/1126-6708/2007/04/004
[70] J. Walcher, Extended holomorphic anomaly and loop amplitudes in open topological string, Nucl. Phys. B 817, 167 (2009), doi:10.1016/j.nuclphysb.2009.02.006. · Zbl 1194.81219 · doi:10.1016/j.nuclphysb.2009.02.006
[71] A. Neitzke and J. Walcher, Background independence and the open topological string wave-function, Proc. Symp. Pure Math. 78, 285 (2008), doi:10.1090/pspum/078/2483755. · Zbl 1153.81527 · doi:10.1090/pspum/078/2483755
[72] N. A. Nekrasov and S. L. Shatashvili, Quantization of integrable systems and four dimen-sional gauge theories, in XVIth international congress on mathematical physics, World Sci-entific, Singapore, ISBN 9789814304627 (2010), doi:10.1142/9789814304634_0015. · Zbl 1214.83049 · doi:10.1142/9789814304634_0015
[73] A. Grassi, Y. Hatsuda and M. Mariño, Topological strings from quantum mechanics, Ann. Henri Poincaré 17, 3177 (2016), doi:10.1007/s00023-016-0479-4. · Zbl 1365.81094 · doi:10.1007/s00023-016-0479-4
[74] R. Kashaev and M. Mariño, Operators from mirror curves and the quantum dilogarithm, Commun. Math. Phys. 346, 967 (2015), doi:10.1007/s00220-015-2499-1. · Zbl 1348.81436 · doi:10.1007/s00220-015-2499-1
[75] M. Mariño, Spectral theory and mirror symmetry, in String-math 2016, Amer-ican Mathematical Society, Providence, USA, ISBN 9781470435158 (2018), doi:10.1090/PSPUM/098/01722. · Zbl 1452.14040 · doi:10.1090/PSPUM/098/01722
[76] M. Aganagic, A. Klemm and C. Vafa, Disk instantons, mirror symmetry and the Duality Web, Z. Naturforsch. 57, 1 (2002), doi:10.1515/zna-2002-1-201. · Zbl 1203.81153 · doi:10.1515/zna-2002-1-201
[77] Z.-B. Huang, On q-difference Riccati equations and second-order linear q-difference equa-tions, J. Complex Anal. (2013), doi:10.1155/2013/938579. · Zbl 1271.39005 · doi:10.1155/2013/938579
[78] A.-K. Kashani-Poor, Quantization condition from exact WKB for difference equations, J. High Energy Phys. 06, 180 (2016), doi:10.1007/JHEP06(2016)180. · Zbl 1388.81557 · doi:10.1007/JHEP06(2016)180
[79] A. Mironov and A. Morozov, Nekrasov functions and exact Bohr-Sommerfeld integrals, J. High Energy Phys. 04, 040 (2010), doi:10.1007/JHEP04(2010)040. · Zbl 1272.81180 · doi:10.1007/JHEP04(2010)040
[80] A. Grassi, J. Gu and M. Mariño, Non-perturbative approaches to the quantum Seiberg-Witten curve, J. High Energy Phys. 07, 106 (2020), doi:10.1007/JHEP07(2020)106. · Zbl 1451.81352 · doi:10.1007/JHEP07(2020)106
[81] A. Grassi, Q. Hao and A. Neitzke, Exact WKB methods in SU(2) N f = 1, J. High Energy Phys. 01, 046 (2022), doi:10.1007/JHEP01(2022)046. · Zbl 1521.81085 · doi:10.1007/JHEP01(2022)046
[82] N. Seiberg and E. Witten, Gauge dynamics and compactification to three dimensions, (arXiv preprint) doi:10.48550/arXiv.hep-th/9607163. · Zbl 1058.81717 · doi:10.48550/arXiv.hep-th/9607163
[83] S. Alexandrov, B. Pioline, F. Saueressig and S. Vandoren, D-instantons and twistors, J. High Energy Phys. 03, 044 (2009), doi:10.1088/1126-6708/2009/03/044. · doi:10.1088/1126-6708/2009/03/044
[84] D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants, American Mathematical Society, Providence, USA, ISBN 9780821852798 (2012), doi:10.1090/S0065-9266-2011-00630-1. · Zbl 1259.14054 · doi:10.1090/S0065-9266-2011-00630-1
[85] B. Haghighat, J. Manschot and S. Vandoren, A 5d/2d/4d correspondence, J. High Energy Phys. 03, 157 (2013), doi:10.1007/JHEP03(2013)157. · Zbl 1342.81493 · doi:10.1007/JHEP03(2013)157
[86] B. Haghighat and S. Vandoren, Five-dimensional gauge theory and compactification on a torus, J. High Energy Phys. 09, 060 (2011), doi:10.1007/JHEP09(2011)060. · Zbl 1301.81132 · doi:10.1007/JHEP09(2011)060
[87] S. Alexandrov, S. Banerjee and P. Longhi, Rigid limit for hypermultiplets and five-dimensional gauge theories, J. High Energy Phys. 01, 156 (2018), doi:10.1007/JHEP01(2018)156. · Zbl 1384.83047 · doi:10.1007/JHEP01(2018)156
[88] K. Ito, M. Mariño and H. Shu, TBA equations and resurgent quantum mechanics, J. High Energy Phys. 01, 228 (2019), doi:10.1007/JHEP01(2019)228. · Zbl 1409.81043 · doi:10.1007/JHEP01(2019)228
[89] D. Fioravanti and D. Gregori, Integrability and cycles of deformed N = 2 gauge theory, Phys. Lett. B 804, 135376 (2020), doi:10.1016/j.physletb.2020.135376. · Zbl 1435.81129 · doi:10.1016/j.physletb.2020.135376
[90] D. Fioravanti, H. Poghosyan and R. Poghossian, T, Q and periods in SU(3) N = 2 SYM, J. High Energy Phys. 03, 049 (2020), doi:10.1007/JHEP03(2020)049. · doi:10.1007/JHEP03(2020)049
[91] F. Yan, Exact WKB and the quantum Seiberg-Witten curve for 4d N = 2 pure SU(3) Yang-Mills. Abelianization, J. High Energy Phys. 03, 164 (2022), doi:10.1007/JHEP03(2022)164. · Zbl 1522.81666 · doi:10.1007/JHEP03(2022)164
[92] D. Fioravanti and M. Rossi, On the origin of the correspondence between clas-sical and quantum integrable theories, Phys. Lett. B 838, 137706 (2023), doi:10.1016/j.physletb.2023.137706. · Zbl 1519.81184 · doi:10.1016/j.physletb.2023.137706
[93] D. Gaiotto, G. W. Moore and A. Neitzke, Spectral networks, Ann. Henri Poincaré 14, 1643 (2013), doi:10.1007/s00023-013-0239-7. · Zbl 1288.81132 · doi:10.1007/s00023-013-0239-7
[94] E. Frenkel, P. Koroteev, D. S. Sage and A. M. Zeitlin, q-opers, QQ-Systems, and Bethe Ansatz, J. Eur. Math. Soc. (2023), doi:10.4171/jems/1268. · doi:10.4171/jems/1268
[95] A. Barbieri, A Riemann-Hilbert problem for uncoupled BPS structures, Manuscripta Math. 162, 1 (2019), doi:10.1007/s00229-019-01115-y. · Zbl 1440.14045 · doi:10.1007/s00229-019-01115-y
[96] S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Am. Math. Soc. 15, 497 (2002). · Zbl 1021.16017
[97] V. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42, 865 (2009), doi:10.24033/ASENS.2112. · Zbl 1225.53070 · doi:10.24033/ASENS.2112
[98] M. Alim, S. Cecotti, C. Córdova, S. Espahbodi, A. Rastogi and C. Vafa, BPS quivers and spectra of complete N = 2 quantum field theories, Commun. Math. Phys. 323, 1185 (2013), doi:10.1007/s00220-013-1789-8. · Zbl 1305.81118 · doi:10.1007/s00220-013-1789-8
[99] M. Alim, S. Cecotti, C. Córdova, S. Espahbodi, A. Rastogi and C. Vafa, N = 2 quantum field theories and their BPS quivers, Adv. Theor. Math. Phys. 18, 27 (2014), doi:10.4310/ATMP.2014.v18.n1.a2. · Zbl 1309.81142 · doi:10.4310/ATMP.2014.v18.n1.a2
[100] V. Fock and A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. math. IHÉS 103, 1 (2006), doi:10.1007/s10240-006-0039-4. · Zbl 1099.14025 · doi:10.1007/s10240-006-0039-4
[101] A. B. Goncharov and R. Kenyon, Dimers and cluster integrable systems, Ann. Sci. Éc. Norm. Supér. 46, 747 (2013). · Zbl 1288.37025
[102] V. V. Fock and A. Marshakov, Loop groups, clusters, dimers and integrable systems, in Geometry and quantization of moduli spaces, Birkhäuser, Cham, Switzerland, ISBN 9783319335780 (2016), doi:10.1007/978-3-319-33578-0_1. · Zbl 1417.37248 · doi:10.1007/978-3-319-33578-0_1
[103] S. Cecotti and M. Del Zotto, Y-systems, Q-systems, and 4D N = 2 supersymmetric QFT, J. Phys. A: Math. Theor. 47, 474001 (2014), doi:10.1088/1751-8113/47/47/474001. · Zbl 1304.81141 · doi:10.1088/1751-8113/47/47/474001
[104] M. Cirafici and M. Del Zotto, Discrete integrable systems, supersymmetric quan-tum mechanics, and framed BPS states -I, J. High Energy Phys. 07, 005 (2022), doi:10.1007/JHEP07(2022)005. · Zbl 1522.81612 · doi:10.1007/JHEP07(2022)005
[105] L. Gottsche, H. Nakajima and K. Yoshioka, K-theoretic Donaldson invariants via instanton counting, Pure Appl. Math. Quart. 5, 1029 (2009), doi:10.4310/PAMQ.2009.v5.n3.a5. · Zbl 1192.14011 · doi:10.4310/PAMQ.2009.v5.n3.a5
[106] T. Eguchi and H. Kanno, Topological strings and Nekrasov’s formulas, J. High Energy Phys. 12, 006 (2003), doi:10.1088/1126-6708/2003/12/006. · doi:10.1088/1126-6708/2003/12/006
[107] I. Coman, P. Longhi and J. Teschner, From quantum curves to topological string partition functions II, (arXiv preprint) doi:10.48550/arXiv.2004.04585. · doi:10.48550/arXiv.2004.04585
[108] L. Hollands and A. Neitzke, Spectral networks and Fenchel-Nielsen coordinates, Lett. Math. Phys. 106, 811 (2016), doi:10.1007/s11005-016-0842-x. · Zbl 1345.32020 · doi:10.1007/s11005-016-0842-x
[109] L. Hollands and O. Kidwai, Higher length-twist coordinates, generalized Heun’s opers, and twisted superpotentials, Adv. Theor. Math. Phys. 22, 1713 (2018), doi:10.4310/ATMP.2018.v22.n7.a2. · Zbl 07430956 · doi:10.4310/ATMP.2018.v22.n7.a2
[110] L. Hollands, P. Rüter and R. J. Szabo, A geometric recipe for twisted superpotentials, J. High Energy Phys. 12, 164 (2021), doi:10.1007/JHEP12(2021)164. · Zbl 1521.81390 · doi:10.1007/JHEP12(2021)164
[111] I. Coman, E. Pomoni and J. Teschner, From quantum curves to topological string partition functions, Commun. Math. Phys. 399, 1501 (2023), doi:10.1007/s00220-022-04579-4. · Zbl 1522.81336 · doi:10.1007/s00220-022-04579-4
[112] I. Aniceto, G. Başar and R. Schiappa, A primer on resurgent transseries and their asymp-totics, Phys. Rep. 809, 1 (2019), doi:10.1016/j.physrep.2019.02.003. · doi:10.1016/j.physrep.2019.02.003
[113] M.-x. Huang, K. Sun and X. Wang, Blowup equations for refined topological strings, J. High Energy Phys. 10, 196 (2018), doi:10.1007/JHEP10(2018)196. · Zbl 1402.83096 · doi:10.1007/JHEP10(2018)196
[114] M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, (arXiv preprint) doi:10.48550/arXiv.hep-th/0012041. · doi:10.48550/arXiv.hep-th/0012041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.