×

BPS quivers and spectra of complete \(\mathcal N =2\) quantum field theories. (English) Zbl 1305.81118

Summary: We study the BPS spectra of \(\mathcal N = 2\) complete quantum field theories in four dimensions. For examples that can be described by a pair of M5 branes on a punctured Riemann surface we explain how triangulations of the surface fix a BPS quiver and superpotential for the theory. The BPS spectrum can then be determined by solving the quantum mechanics problem encoded by the quiver. By analyzing the structure of this quantum mechanics we show that all asymptotically free examples, Argyres-Douglas models, and theories defined by punctured spheres and tori have a chamber with finitely many BPS states. In all such cases we determine the spectrum.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T20 Quantum field theory on curved space or space-time backgrounds
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
16G20 Representations of quivers and partially ordered sets

References:

[1] Seiberg N., Witten E.: Electric - magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory. Nucl. Phys. B426, 19-52 (1994) · Zbl 0996.81510 · doi:10.1016/0550-3213(94)90124-4
[2] Seiberg N., Witten E.: Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD. Nucl. Phys. B431, 484-550 (1994) · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[3] Kontsevich, M., Soibelman, Y.: “Stability structures, motivic Donaldson-Thomas invariants and cluster transformations”. http://arxiv.org/abs/0811.2435v1 [math.AG], 2008 · Zbl 1248.14060
[4] Gaiotto D., Moore G.W., Neitzke A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163-224 (2010) · Zbl 1225.81135 · doi:10.1007/s00220-010-1071-2
[5] Gaiotto, D., Moore, G.W., Neitzke, A.: “Wall-crossing, Hitchin Systems, and the WKB Approximation”. http://arxiv.org/abs/0907.3987v2 [hep-th], 2011 · Zbl 1358.81150
[6] Gaiotto, D., Moore, G.W., Neitzke, A.: “Framed BPS States”. http://arxiv.org/abs/1006.0146v2 [hep-th], 2012 · Zbl 1290.81146
[7] Gaiotto, D., Moore, G.W., Neitzke, A.: “Wall-Crossing in Coupled 2d-4d Systems”. http://arxiv.org/abs/1103.2598v1 [hep-th], 2011 · Zbl 1397.81364
[8] Andriyash, E., Denef, F., Jafferis, D.L., Moore, G.W.: “Wall-crossing from supersymmetric galaxies”. http://arxiv.org/abs/1008.0030v1 [hep-th], 2010 · Zbl 1306.81182
[9] Andriyash, E., Denef, F., Jafferis, D.L., Moore, G.W.: “Bound state transformation walls”. http://arxiv.org/abs/1008.3555v1 [hep-th], 2010 · Zbl 1309.81192
[10] Manschot J., Pioline B., Sen A.: Wall crossing from Boltzmann black hole halos. J. H. E. P. 1107, 059 (2011) · Zbl 1298.81320
[11] Joyce, D., Song, Y.: “A theory of generalized Donaldson-Thomas invariants”. http://arxiv.org/abs/0810.5645v6 [math.AG], 2010 · Zbl 1259.14054
[12] Joyce, D., Song, Y.: “A theory of generalized Donaldson-Thomas invariants. II. Multiplicative identities for Behrend functions”. http://arxiv.org/abs/0901.2872v2 [math.AG], 2009 · Zbl 1205.81113
[13] Dimofte T., Gukov S.: Refined, Motivic, and Quantum. Lett. Math. Phys. 91, 1 (2010) · Zbl 1180.81112 · doi:10.1007/s11005-009-0357-9
[14] Dimofte T., Gukov S., Soibelman Y.: Quantum Wall Crossing in N = 2 Gauge Theories. Lett. Math. Phys. 95, 1-25 (2011) · Zbl 1205.81113 · doi:10.1007/s11005-010-0437-x
[15] Cecotti, S., Vafa, C.: “Classification of complete <Emphasis Type=”Italic“>N = 2 supersymmetric theories in 4 dimensions”. http://arxiv.org/abs/1103.5832v1 [hep-th], 2011, available at intipress.com/site/pub/files/_fulltext/journals/sdg/2013/0018/0001/SDG-2013-0018-0001-00026452.pdf · Zbl 1320.81085
[16] Gaiotto, D.: “<Emphasis Type=”Italic“>N = 2 dualities”. http://arxiv.org/abs/0904.2715v1 [hep-th], 2009 · Zbl 0935.81058
[17] Witten E.: Solutions Of Four-Dimensional Field Theories Via M Theory. Nucl. Phys. B500, 3-42 (1997) · Zbl 0934.81066 · doi:10.1016/S0550-3213(97)00416-1
[18] Chacaltana O., Distler J.: Tinkertoys for Gaiotto Duality. JHEP 1011, 099 (2010) · Zbl 1294.81177 · doi:10.1007/JHEP11(2010)099
[19] Chacaltana, O., Distler, J.: “Tinkertoys for the <Emphasis Type=”Italic“>D <Emphasis Type=”Italic“>N series”. http://arxiv.org/abs/1106.5410v2 [hep-th], 2012 · Zbl 1342.81566
[20] Denef F.: Quantum quivers and Hall / hole halos. JHEP 0210, 023 (2002) · doi:10.1088/1126-6708/2002/10/023
[21] Douglas, M.R., Moore, G.W.: “D-branes, Quivers, and ALE Instantons”. http://arxiv.org/abs/hep-th/9603167v1 , 1996 · Zbl 1225.81135
[22] Douglas M.R., Fiol B., Romelsberger C.: Stability and BPS branes. JHEP 0509, 006 (2005) · doi:10.1088/1126-6708/2005/09/006
[23] Douglas M.R., Fiol B., Romelsberger C.: The Spectrum of BPS branes on a noncompact Calabi-Yau. JHEP 0509, 057 (2005) · doi:10.1088/1126-6708/2005/09/057
[24] Cecotti, S., Neitzke, A., Vafa, C.: “R-Twisting and 4d/2d Correspondences”. http://arxiv.org/abs/1006.3435v2 [hep-th], 2010 · Zbl 0996.81510
[25] Cecotti, S., Del Zotto, M.: “On Arnold’s 14 ‘exceptional’ <Emphasis Type=”Italic“>N = 2 superconformal gauge theories”. http://arxiv.org/abs/1107.5747v1 [hep-th], 2011 · Zbl 1303.81151
[26] Fiol B.: The BPS spectrum of N = 2 SU(N) SYM and parton branes. JHEP 02, 065 (2006) · doi:10.1088/1126-6708/2006/02/065
[27] Fiol B., Marino M.: BPS states and algebras from quivers. JHEP 0007, 031 (2000) · Zbl 0965.81067 · doi:10.1088/1126-6708/2000/07/031
[28] Klemm A., Mayr P., Vafa C.: BPS states of exceptional non-critical strings. Nucl. Phys. B58, 117-194 (1997) · Zbl 0976.81503
[29] Katz S.H., Klemm A., Vafa C.: Geometric engineering of quantum field theories. Nucl. Phys. B497, 173-195 (1997) · Zbl 0935.81058 · doi:10.1016/S0550-3213(97)00282-4
[30] Klemm A., Lerche W., Mayr P., Vafa C., Warner N.P.: Selfdual strings and N = 2 supersymmetric field theory. Nucl. Phys. B477, 746-766 (1996) · Zbl 0925.81196 · doi:10.1016/0550-3213(96)00353-7
[31] Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A., Vafa, C.: “<Emphasis Type=”Italic“>N = 2 Quantum Field Theories and Their BPS Quivers”. http://arxiv.org/abs/1112.3984v1 [hep-th], 2011 · Zbl 1309.81142
[32] Fomin, S., Zelevinsky, A.: “Cluster algebras I: Foundations”. http://arxiv.org/abs/0104151v1 [math.CO], 2001 · Zbl 1021.16017
[33] Derksen, H., Weyman, J., Zelevinsky, A.: “Quivers with potentials and their representations I: Mutations”. http://arxiv.org/abs/0704.0649v4 [math.RA], 2008 · Zbl 1204.16008
[34] Fomin S., Shapiro M., Thurston D.: Cluster algebras and triangulated surfaces. Part I: Cluster complexes. Acta Math. 201, 83-146 (2006) · Zbl 1263.13023 · doi:10.1007/s11511-008-0030-7
[35] Berenstein, D., Douglas, M.R.: “Seiberg duality for quiver gauge theories”. http://arxiv.org/abs/hep-th/0207027v1 , 2002
[36] Katz S., Mayr P., Vafa C.: Mirror symmetry and Exact Solution of 4D N = 2 Gauge Theories I. Adv. Theor. Math. Phys. 1, 53-114 (1998) · Zbl 0912.32016
[37] Joyce D.: On counting special Lagrangian homology 3-spheres. Contemp. Math. 314, 125-151 (2002) · Zbl 1060.53059 · doi:10.1090/conm/314/05427
[38] Shapere, A.D., Vafa, C.: “BPS structure of Argyres-Douglas superconformal theories”. http://arxiv.org/abs/hep-th/9910182v2 [hep-th], 1999
[39] Strebel, K.: Quadratic Differentials. Berlin-Heidelberg-New York: Springer Verlag, 1984 · Zbl 0547.30001
[40] Felikson A., Shapiro M., Tumarkin P.: Skew-symmetric cluster algebras of finite mutation type. J. Eur. Math. Soc. 14, 1135-1180 (2012) · Zbl 1262.13038 · doi:10.4171/JEMS/329
[41] Labardini-Fragoso, D.: “Quivers with potentials associated to triangulated surfaces”. http://arxiv.org/abs/0803.1328v3 [math.RT], 2008 · Zbl 1241.16012
[42] Labardini-Fragoso, D.: “Quivers with potentials associated to triangulated surfaces, Part II: Arc representations”. http://arxiv.org/abs/0909.4100v2 [math.RT], 2009 · Zbl 1241.16012
[43] Cerulli Irelli G., Labardini-Fragoso D.: Quivers with potentials associated to triangulated surfaces, Part III: tagged triangulations and cluster monomials. Comp. math. 148(6), 1833-1866 (2012) · Zbl 1282.16018 · doi:10.1112/S0010437X12000528
[44] Bakke Buan, A., Reiten, I.: “Cluster algebras associated with extended Dynkin quivers”. http://arxiv.org/abs/math/0507113v1 [math.RT], 2005
[45] Derksen, H., Owen, T.: “New Graphs of Finite Mutation Type”. http://arxiv.org/abs/0804.0787v1 [math.CO], 2008 · Zbl 1180.05052
[46] Ladkani, S.: “Mutation classes of certain quivers with potentials as derived equivalence classes”. http://arxiv.org/abs/1102.4108v1 [math.RT], 2011
[47] Strominger A.: Special geometry. Commun. Math. Phys. 133, 163-180 (1990) · Zbl 0716.53068 · doi:10.1007/BF02096559
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.