×

Loop groups, clusters, dimers and integrable systems. (English) Zbl 1417.37248

Álvarez-Consul, Luis (ed.) et al., Geometry and quantization of moduli spaces. Based on 4 courses, Barcelona, Spain, March – June 2012. Basel: Birkhäuser/Springer. Adv. Courses in Math., CRM Barcelona, 1-65 (2016).
From the introduction: The main idea of this work is to demonstrate the equivalence of two a priori different methods of construction and description of a wide class of integrable models, and thus, to propose a unified approach for their investigation. In the first, well-known method [A. G. Reyman and M. A. Semenov-Tian-Shansky, J. Sov. Math. 47, No. 2, 2493–2502 (1989; Zbl 0689.35091); translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 164, 176–188 (1987)], the phase space is taken as a quotient of double Bruhat cells of a Kac-Moody Lie group, with the Poisson structure defined by a classical \( r\)-matrix, and the integrals of motion are just the \(\text{Ad}\)-invariant functions.
For the entire collection see [Zbl 1362.14002].

MSC:

37K30 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with infinite-dimensional Lie algebras and other algebraic structures
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
13F60 Cluster algebras
14H70 Relationships between algebraic curves and integrable systems
17B80 Applications of Lie algebras and superalgebras to integrable systems
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
53D17 Poisson manifolds; Poisson groupoids and algebroids
82B23 Exactly solvable models; Bethe ansatz

Citations:

Zbl 0689.35091

References:

[1] H.W. Braden and A. Marshakov, Singular phases of the Seiberg-Witten integrable systems, Nucl. Phys. B 595 (2001), 417; arXiv:hep-th/0009060. · Zbl 0972.81176
[2] D. Cimasoni and N. Reshetikhin, Dimers on surface graphs and spin structures I, Comm. Math. Phys. 275 (2007), 187-208; arXiv:math-ph/0608070. · Zbl 1135.82006
[3] M. Cohen, O. Dasbach, and H. Russell, A twisted dimer model for knots, Fund. Math. 225(1) (2014), 57-74; arXiv:1010.5228. · Zbl 1311.57010
[4] V.V. Fock and A.B. Goncharov, Cluster X-varieties, amalgamation and Poisson-Lie groups, in Algebraic Geometry Theory and Number Theory, pp. 27-68, Progr. Math. 253, Birkh¨auser Boston, Boston, MA, 2006; math.RT/0508408. · Zbl 1162.22014
[5] V.V. Fock and A.B. Goncharov, Moduli spaces of local systems and higher Teichm¨uller theory, Publ. Math. Inst. Hautes ´Etudes Sci. 103(1) (2006), 1- 211; arXiv:math/0311149. · Zbl 1099.14025
[6] V.V. Fock and A. Marshakov, A note on quantum groups and relativistic Toda theory, Nucl. Phys. B (Proc. Suppl.) 56(3) (1997), 208-214. · Zbl 0957.37516
[7] S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12(2) (1999), 335-380; arXiv:math/9802056v1. · Zbl 0913.22011
[8] W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies 131, Princeton University Press, New Jersey, 1993. · Zbl 0813.14039
[9] M. Gekhtman, M. Shapiro, S. Tabachnikov, and A. Vainshtein, Higher pentagram maps, weighted directed networks, and cluster dynamics, Electron. Res. Announc. Math. Sci. 19 (2012), 1-17; arXiv:1110.0472. · Zbl 1278.37047
[10] M. Glick, The pentagram map and Y-patterns, Adv. Math. 227(2) (2011), 1019-1045; arXiv:1005.0598. · Zbl 1229.05021
[11] A. Goncharov and R. Kenyon, Dimers and cluster integrable systems, Ann. Sci. ´Ec. Norm. Sup´er. 46 (2013), 747-813; arXiv:1107.5588. · Zbl 1288.37025
[12] T. Hoffman, J. Kellendonk, N. Kuntz, and N. Reshetikhin, Factorization dynamics and Coxeter-Toda lattices, Comm. Math. Phys. 212(2) (2000), 297- 321; arXiv:solv-int/9906013. · Zbl 0989.37074
[13] D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B 14 (1976), 2239-2249.
[14] D. Johnson, Spin structures and quadratic forms on surfaces, J. London Math. Soc. 22(2) (1980), 365-373. · Zbl 0454.57011
[15] V. Kac, Infinite Dimensional Lie Algebras (third edition) Cambridge University Press, Cambridge, 1990. xxii+400 pp. · Zbl 0716.17022
[16] P.W. Kasteleyn, Graph theory and crystal physics, in F. Harary, editor, Graph Theory and Theoretical Physics, Academic Press, 1967. · Zbl 0205.28402
[17] B. Khesin and F. Soloviev, The pentagram map in higher dimensions and KdV flows, Electron. Res. Announc. Math. Sci. 19 (2012), 86-96; arXiv:1205.3744. · Zbl 1257.37046
[18] B. Khesin and F. Soloviev, Integrability of higher pentagram maps, Math. Ann. 357(3) (2013), 1005-1047; arXiv:1204.0756. · Zbl 1280.37056
[19] M. Kogan and A. Zelevinsky, On symplectic leaves and integrable systems in standard complex semisimple Poisson-Lie groups, Int. Math. Res. Not. 32 (2002), 1685-1702; arXiv:math/0203069. · Zbl 1006.22015
[20] I. Krichever and K. Vaninsky, The periodic and open Toda lattice, Mirror symmetry IV (2000), 139-158, AMS/IP Stud. Adv. Math. 33, Amer. Math. Soc., Providence, RI, 2002; arXiv:hep-th/0010184. · Zbl 1119.37333
[21] A. Marshakov, Lie groups, cluster variables and integrable systems, J. Geom. Phys. 67 (2013) 16—36; arXiv:1207.1869. · Zbl 1266.53083
[22] V. Ovsienko, R. Schwartz, and S. Tabachnikov, The pentagram map: a discrete integrable system, Comm. Math. Phys. 299(2) (2010), 409-446; arXiv:0810.5605. · Zbl 1209.37063
[23] V. Ovsienko, R. Schwartz, and S. Tabachnikov, Liouville-Arnold integrability of the pentagram map on closed polygons, Duke Math. J. 162(12) (2013), 2149-2196; arXiv:1107.3633. · Zbl 1315.37035
[24] A. Reiman and M. Semenov-Tian-Shansky, Интегрируемые системы 352, Москва-Ижевск, РХД, 2003.
[25] S.N.M. Ruijsenaars, Relativistic Toda systems, Comm. Math. Phys. 133 (1990), 217. · Zbl 0719.58019
[26] R. Schwartz, The pentagram map is recurrent, Exper. Math. 10 (2001), 519- 528. · Zbl 1013.52003
[27] F. Soloviev, Integrability of the pentagram map, Duke Math. J. 162(15) (2013), 2815—2853; arXiv:1106.3950. · Zbl 1282.14061
[28] Y.B. Suris, Algebraic structure of discrete-time and relativistic Toda lattices, Phys. Lett. A 156 (1991), 467-474.
[29] D. Thurston, From dominoes to hexagons, arXiv:math/0405482. · Zbl 1407.52021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.