×

Helices on del Pezzo surfaces and tilting Calabi-Yau algebras. (English) Zbl 1193.14022

The authors study tilting for a class of Calabi–Yau algebras associated to helices on Fano varieties.
A helix of sheaves of period \(n\) on a smooth projective variety \(Z\) is an infinite collection of coherent sheaves \({\mathbb{H}} = \{ E_i \}_{i \in {\mathbb{Z}}}\) such that for all \(i \in \mathbb{Z}\), the collection \((E_{i+1}, \ldots, E_{i+n})\) is fully exceptional and \(E_{i-n} = E_i \otimes \omega_Z\). Such helices exist on many Fano varieties, for examples on projective spaces and on Fano surfaces. The main tool to describe helices is the theory of exceptional collections and mutation functors developed in [A. N. Rudakov, (ed.), Helices and vector bundles: Seminaire Rudakov. London Mathematical Society Lecture Note Series, 148. Cambridge etc.: Cambridge University Press. (1990; Zbl 0727.00022)]. To a helix \(\mathbb{H}\) one can associate the graded algebra \(A({\mathbb{H}})\) given by the product of the morphism spaces \(\operatorname{Hom}(E_i,E_j)\) running over all \(j \geq i\). Twisting by \(\omega_Z\) gives a \(\mathbb{Z}\)-action on \(A({\mathbb{H}})\), and \(B({\mathbb{H}})\) is the quotient.
The aim of the authors is studying tilting of Calabi–Yau algebras associated to a special kind of such helices on smooth projective Fano varieties. It is known from T. Bridgeland [\(t\)-structures on some local Calabi–Yau varieties, J. Algebra 289, No. 2, 453-483 (2005; Zbl 1069.14044)] that if \(\mathbb{H}\) is a geometric helix on a smooth projective Fano variety \(Z\) of dimension \(d-1\), the algebra \(B({\mathbb{H}})\) is a graded Calabi–Yau \(d\)-dimensional quiver algebra which is Noetherian and finite over its centre. The bounded derived category \(D(B)\) is equivalent to \(D(Y)\), where \(Y\) is the total space of the canonical bundle \(\omega_Z\).
Let \(Z\) be a del Pezzo surface. The main result of the paper describes completely the tilting process of the algebras \(B({\mathbb{H}})\), for \(\mathbb{H}\) a geometric helix on \(Z\), in term of quiver mutations. Those algebras are three dimensional and their underlying quiver has no loops or oriented two-cycles. Moreover, the tilting of \(B({\mathbb{H}})\) at any vertex is of the form \(B({\mathbb{H}}')\) for some geometric helix \({\mathbb{H}}'\).

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14J25 Special surfaces
18E30 Derived categories, triangulated categories (MSC2010)

References:

[1] Berenstein, D.; Douglas, M., Seiberg duality for quiver gauge theories
[2] Bocklandt, R., Graded Calabi Yau algebras of dimension 3, J. Pure Appl. Algebra, 212, 1, 14-32 (2008) · Zbl 1132.16017
[3] Bondal, A. I., Representation of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat.. Izv. Akad. Nauk SSSR Ser. Mat., Math. USSR-Izv., 34, 1, 23-44 (1990), English transl. in: · Zbl 0692.18002
[4] Bondal, A. I.; Kapranov, M. M., Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat.. Izv. Akad. Nauk SSSR Ser. Mat., Math. USSR-Izv., 35, 3, 519-541 (1990), 1337 (in Russian); English transl. in: · Zbl 0703.14011
[5] Bondal, A. I.; Polishchuk, A. E., Homological properties of associative algebras: The method of helices, Izv. Ross. Akad. Nauk Ser. Mat.. Izv. Ross. Akad. Nauk Ser. Mat., Acad. Sci. Izv. Math., 42, 2, 219-260 (1994), English transl. in Russian: · Zbl 0847.16010
[6] Bondal, A. I.; Van den Bergh, M., Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J., 3, 1, 1-36 (2003), 258 · Zbl 1135.18302
[7] Brenner, S.; Butler, M. C.R., Generalizations of the Bernstein-Gel’fand-Ponomarev reflection functors, (Representation Theory, II. Representation Theory, II, Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979. Representation Theory, II. Representation Theory, II, Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979, Lecture Notes in Math., vol. 832 (1980), Springer: Springer Berlin, New York), 103-169 · Zbl 0446.16031
[8] Bridgeland, T., T-structures on some local Calabi-Yau varieties, J. Algebra, 289, 2, 453-483 (2005) · Zbl 1069.14044
[9] Derksen, H.; Weyman, J.; Zelevinsky, A., Quivers with potentials and their representations. I. Mutations, Selecta Math. (N.S.), 14, 1, 59-119 (2008) · Zbl 1204.16008
[10] Franco, S.; Hanany, A.; He, Y.-H.; Kazakopoulos, P., Duality walls, duality trees and fractional branes
[11] Gorodentsev, A. L.; Kuleshov, S. A., Helix theory, Mosc. Math. J., 4, 2, 377-440 (2004), 535 · Zbl 1072.14020
[12] Happel, D.; Reiten, I.; Smalø, S., Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., 120, 575 (1996), viii+88 pp · Zbl 0849.16011
[13] Hartshorne, R., Algebraic Geometry, Grad. Texts in Math., vol. 52 (1977), Springer-Verlag: Springer-Verlag New York, Heidelberg, xvi+496 pp · Zbl 0367.14001
[14] Herzog, C. P., Seiberg duality is an exceptional mutation, JHEP, 0408, 064 (2004)
[15] Hille, L., Consistent algebras and special tilting sequences, Math. Z., 220, 2, 189-205 (1995) · Zbl 0841.14013
[16] Hille, L.; Van den Bergh, M., Fourier-Mukai transforms, (Handbook of Tilting Theory. Handbook of Tilting Theory, London Math. Soc. Lecture Note Ser., vol. 332 (2007), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 147-177 · Zbl 1106.16300
[17] Karpov, B. V.; Nogin, D. Yu., Three-block exceptional sets on del Pezzo surfaces, Izv. Ross. Akad. Nauk Ser. Mat.. Izv. Ross. Akad. Nauk Ser. Mat., Izv. Math., 62, 3, 429-463 (1998), translation in: · Zbl 0949.14026
[18] Keller, B., On Differential Graded Categories, International Congress of Mathematicians, vol. II (2006), Eur. Math. Soc.: Eur. Math. Soc. Zürich · Zbl 1140.18008
[20] Keller, B.; Yang, D., Derived equivalences from mutations of quivers with potential · Zbl 1272.13021
[21] Kent, R. P.; Peifer, D., A geometric and algebraic description of annular braid groups, Internat. J. Algebra Comput., 12, 1&2, 85-97 (2002) · Zbl 1010.20024
[22] Kontsevich, M.; Soibelman, Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations · Zbl 1202.81120
[23] Kuleshov, S. A.; Orlov, D. O., Exceptional sheaves on Del Pezzo surfaces, Izv. Ross. Akad. Nauk Ser. Mat.. Izv. Ross. Akad. Nauk Ser. Mat., Acad. Sci. Izv. Math., 44, 3, 479-513 (1995), translation in Russian: · Zbl 0842.14009
[24] Reid, M., Young person’s guide to canonical singularities, (Algebraic Geometry, Bowdoin, 1985, Part 1. Algebraic Geometry, Bowdoin, 1985, Part 1, Brunswick, Maine, 1985. Algebraic Geometry, Bowdoin, 1985, Part 1. Algebraic Geometry, Bowdoin, 1985, Part 1, Brunswick, Maine, 1985, Proc. Sympos. Pure Math., vol. 46 (1987), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 345-414 · Zbl 0634.14003
[25] Rickard, J., Morita theory for derived categories, J. London Math. Soc. (2), 39, 3, 436-456 (1989) · Zbl 0642.16034
[26] Rudakov, A. N., Exceptional collections, mutations and helices, (Helices and Vector Bundles. Helices and Vector Bundles, London Math. Soc. Lecture Note Ser., vol. 148 (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 1-6 · Zbl 0721.14011
[27] Van den Bergh, M., Non-commutative crepant resolutions, (The Legacy of Niels Henrik Abel (2004), Springer: Springer Berlin), 749-770 · Zbl 1082.14005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.