×

Extended holomorphic anomaly and loop amplitudes in open topological string. (English) Zbl 1194.81219

Summary: Open topological string amplitudes on compact Calabi-Yau threefolds are shown to satisfy an extension of the holomorphic anomaly equation of Bershadsky, Cecotti, Ooguri and Vafa. The total topological charge of the D-brane configuration must vanish in order to satisfy tadpole cancellation. The boundary state of such D-branes is holomorphically captured by a Hodge theoretic normal function. Its Griffiths’ infinitesimal invariant is the analogue of the closed string Yukawa coupling and plays the role of the terminator in a Feynman diagram expansion for the topological string with D-branes. The holomorphic anomaly equation is solved and the holomorphic ambiguity is fixed for some representative worldsheets of low genus and with few boundaries on the real quintic.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
81T18 Feynman diagrams

References:

[1] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Holomorphic anomalies in topological field theories, Nucl. Phys. B, 405, 279 (1993) · Zbl 0908.58074
[2] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys., 165, 311 (1994) · Zbl 0815.53082
[3] Candelas, P.; De La Ossa, X. C.; Green, P. S.; Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B, 359, 21 (1991) · Zbl 1098.32506
[4] Walcher, J., Opening mirror symmetry on the quintic, Commun. Math. Phys., 276, 671-689 (2007) · Zbl 1135.14030
[5] Pandharipande, R.; Solomon, J.; Walcher, J., Disk enumeration on the quintic 3-fold, J. Am. Math. Soc., 21, 1169-1209 (2008) · Zbl 1203.53086
[6] Morrison, D. R.; Walcher, J., D-branes and normal functions · Zbl 1166.81036
[7] Lerche, W.; Mayr, P.; Warner, N., \(N = 1\) special geometry, mixed Hodge variations and toric geometry · Zbl 0934.81036
[8] Antoniadis, I.; Narain, K. S.; Taylor, T. R., Open string topological amplitudes and gaugino masses, Nucl. Phys. B, 729, 235 (2005)
[9] Marino, M., Open string amplitudes and large order behavior in topological string theory
[10] Eynard, B.; Marino, M.; Orantin, N., Holomorphic anomaly and matrix models
[11] Aganagic, M.; Dijkgraaf, R.; Klemm, A.; Marino, M.; Vafa, C., Topological strings and integrable hierarchies, Commun. Math. Phys., 261, 451 (2006) · Zbl 1095.81049
[12] Aganagic, M.; Neitzke, A.; Vafa, C., BPS microstates and the open topological string wave function · Zbl 1116.81050
[13] Griffiths, P. A., On the periods of certain rational integrals. I, II, Ann. Math., 90, 460-541 (1969) · Zbl 0215.08103
[14] Griffiths, P. A., Infinitesimal variations of Hodge structure. III. Determinantal varieties and the infinitesimal invariant of normal functions, Compositio Math., 50, 2-3, 267-324 (1983) · Zbl 0576.14009
[15] Voisin, C., Une remarque sur l’invariant infinitésimal des fonctions normales, C. R. Acad. Sci. Paris Ser. I Math., 307, 4, 157-160 (1988) · Zbl 0673.14005
[16] Green, M. L., Griffiths’ infinitesimal invariant and the Abel-Jacobi map, J. Differential Geom., 29, 3, 545-555 (1989) · Zbl 0692.14003
[17] Yamaguchi, S.; Yau, S. T., Topological string partition functions as polynomials, JHEP, 0407, 047 (2004)
[18] Huang, M.x.; Klemm, A.; Quackenbush, S., Topological string theory on compact Calabi-Yau: Modularity and boundary conditions · Zbl 1166.81358
[19] Gopakumar, R.; Vafa, C., M-theory and topological strings. II · Zbl 0922.32015
[20] Ooguri, H.; Vafa, C., Knot invariants and topological strings, Nucl. Phys. B, 577, 419 (2000) · Zbl 1036.81515
[21] Labastida, J. M.F.; Marino, M.; Vafa, C., Knots, links and branes at large \(N\), JHEP, 0011, 007 (2000) · Zbl 0990.81545
[22] Brunner, I.; Douglas, M. R.; Lawrence, A. E.; Romelsberger, C., D-branes on the quintic, JHEP, 0008, 015 (2000) · Zbl 0989.81100
[23] Hori, K.; Walcher, J., D-branes from matrix factorizations, 28 June-2 July 2004, Paris. 28 June-2 July 2004, Paris, C. R. Phys., 5, 1061 (2004), Talk at Strings ’04
[24] Lerche, W.; Vafa, C.; Warner, N. P., Chiral rings in \(N = 2\) superconformal theories, Nucl. Phys. B, 324, 427 (1989)
[25] Cecotti, S.; Vafa, C., Topological antitopological fusion, Nucl. Phys. B, 367, 359 (1991) · Zbl 1136.81403
[26] Hori, K., Mirror Symmetry, Clay Mathematics Monographs, vol. 1 (2003), AMS · Zbl 1044.14018
[27] Ooguri, H.; Oz, Y.; Yin, Z., D-branes on Calabi-Yau spaces and their mirrors, Nucl. Phys. B, 477, 407 (1996) · Zbl 0925.14008
[28] Douglas, M. R., D-branes, categories and \(N = 1\) supersymmetry, J. Math. Phys., 42, 2818 (2001) · Zbl 1036.81027
[29] Bridgeland, T., Stability conditions on triangulated categories · Zbl 1137.18008
[30] Thomas, R. P.; Yau, S.-T., Special Lagrangians, stable bundles and mean curvature flow, Commun. Anal. Geom., 10, 5, 1075 (2002) · Zbl 1115.53054
[31] Herbst, M.; Lazaroiu, C. I.; Lerche, W., Superpotentials, A(infinity) relations and WDVV equations for open topological strings, JHEP, 0502, 071 (2005)
[32] Herbst, M., Quantum A-infinity structures for open-closed topological strings
[33] Sharpe, E. R., D-branes, derived categories, and Grothendieck groups, Nucl. Phys. B, 561, 433 (1999) · Zbl 1028.81519
[34] Douglas, M. R., D-branes, categories and \(N = 1\) supersymmetry, J. Math. Phys., 42, 2818 (2001) · Zbl 1036.81027
[35] Lazaroiu, C. I., D-brane categories, Int. J. Mod. Phys. A, 18, 5299 (2003) · Zbl 1038.81054
[36] Sharpe, E., Lectures on D-branes and sheaves
[37] Lazaroiu, C. I., String field theory and brane superpotentials, JHEP, 0110, 018 (2001)
[38] Warner, N. P., Supersymmetry in boundary integrable models, Nucl. Phys. B, 450, 663 (1995) · Zbl 0925.81346
[39] Green, M. L., Infinitesimal methods in Hodge theory, (Algebraic Cycles and Hodge Theory. Algebraic Cycles and Hodge Theory, Torino, 1993. Algebraic Cycles and Hodge Theory. Algebraic Cycles and Hodge Theory, Torino, 1993, Lecture Notes in Mathematics, vol. 1594 (1994), Springer), 1-92 · Zbl 0846.14001
[40] Voisin, C., Hodge Theory and Complex Algebraic Geometry I, II (2002), Cambridge Univ. Press, 2003 · Zbl 1005.14002
[41] Witten, E., Chern-Simons gauge theory as a string theory, Prog. Math., 133, 637 (1995) · Zbl 0844.58018
[42] Witten, E., Branes and the dynamics of QCD, Nucl. Phys. B, 507, 658-690 (1997) · Zbl 0925.81388
[43] Witten, E., New issues in manifolds of SU(3) holonomy, Nucl. Phys. B, 268, 79 (1986)
[44] Donaldson, S. K.; Thomas, R. P., Gauge theory in higher dimensions, (The Geometric Universe (1998), Oxford Univ. Press: Oxford Univ. Press Oxford), 31-47 · Zbl 0926.58003
[45] Aganagic, M.; Vafa, C., Mirror symmetry, D-branes and counting holomorphic discs
[46] Donagi, R.; Markman, E., Cubics, integrable systems, and Calabi-Yau threefolds, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry. Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry, Israel Math. Conf. Proc., 9, 199-221 (1993) · Zbl 0878.14031
[47] Clemens, H., Cohomology and obstructions II: Curves on K-trivial threefolds, with contributions by R. Thomas and C. Voisin
[48] Bismut, J.-M.; Gillet, H.; Soulé, C., Analytic torsion and holomorphic determinant bundles. III, Commun. Math. Phys., 115, 2, 301-351 (1988) · Zbl 0651.32017
[49] Biswas, I.; Schumacher, G., Determinant bundle, Quillen metric, and Petersson-Weil form on moduli spaces, Geom. Funct. Anal., 9, 2, 226-255 (1999) · Zbl 0968.32008
[50] Fang, H.; Lu, Z., Generalized Hodge metrics and BCOV torsion on Calabi-Yau moduli, J. Reine Angew. Math., 588, 49-69 (2005) · Zbl 1139.32012
[51] Walcher, J., Evidence for tadpole cancellation in the topological string · Zbl 1168.81023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.