×

Standing waves for Choquard equation with noncritical rotation. (English) Zbl 07873688

Summary: We investigate the existence and stability of standing waves with prescribed mass \(c>0\) for Choquard equation with noncritical rotation in Bose-Einstein condensation. Then, we consider the mass collapse behavior of standing waves, the ratio of energy to mass and the Lagrange multiplier, as \(c\to 0^+\). Our results extend the existing results.

MSC:

47G20 Integro-differential operators
35R11 Fractional partial differential equations
35A15 Variational methods applied to PDEs
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] P. Antonelli, R. Carles, and J. Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Comm. Math. Phys. 334 (2015), 367-396, DOI: https://doi.org/10.1007/s00220-014-2166-y. · Zbl 1309.35124 · doi:10.1007/s00220-014-2166-y
[2] J. Arbunich, I. Nenciu, and C. Sparber, Stability and instability properties of rotating Bose-Einstein condensates, Lett. Math. Phys. 109 (2019), no. 6, 1415-1432, DOI: https://doi.org/10.1007/s11005-018-01149-5. · Zbl 1428.35429 · doi:10.1007/s11005-018-01149-5
[3] A. Ardila and H. Hajaiej, Global well-posedness, blow-up and stability of standing waves for supercritical NLS with rotation, J. Dynam. Differential Equations 35 (2021), 1643-1665, DOI: https://doi.org/10.1007/s10884-021-09976-2. · Zbl 1515.35238 · doi:10.1007/s10884-021-09976-2
[4] J. Bellazzini, N. Boussaid, L. Jeanjean, and N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Commun. Math. Phys. 353 (2017), 229-251, DOI: https://doi.org/10.1007/s00220-017-2866-1. · Zbl 1367.35150 · doi:10.1007/s00220-017-2866-1
[5] J. Bellazzini and L. Jeanjean, On dipolar quantum gases in the unstable regime, SIAM J. Math. Anal. 48 (2016), 2028-2058, DOI: https://doi.org/10.1137/15M1015959. · Zbl 1352.35157 · doi:10.1137/15M1015959
[6] H. Berestycki and P. Lions, Nonlinear scalar field equations, II existence of infinitely many solutions, Arch. Ration. Mech. Anal. 82 (1983), 347-375, DOI: https://doi.org/10.1007/BF00250556. · Zbl 0556.35046 · doi:10.1007/BF00250556
[7] D. Cao, B. Feng, and T. Luo, On the standing waves for the X-ray free electron laser Schrödinger equation, Discrete Contin. Dyn. Syst. 42 (2022), no. 12, 6097-6137, DOI: https://doi.org/10.3934/dcds.2022139. · Zbl 1505.35178 · doi:10.3934/dcds.2022139
[8] R. Carles and H. Hajaiej, Complementary study of the standing wave solutions of the Gross-Pitaevskii equation in dipolar quantum gases, Bull. Lond. Math. Soc. 47 (2015), no. 3, 509-518, DOI: https://doi.org/10.1112/blms/bdv024. · Zbl 1317.35228 · doi:10.1112/blms/bdv024
[9] S. Cingolani and K. Tanaka, Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well, Rev. Mat. Iberoam. 35 (2019), no. 6, 1885-1924. DOI: https://doi.org/10.4171/rmi/1105. · Zbl 1431.35169 · doi:10.4171/rmi/1105
[10] S. Cingolani, M. Gallo, and K. Tanaka, Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities, Calc. Var. Partial Differential Equations 61 (2022), 68. · Zbl 1485.35229
[11] S. Cingolani and K. Tanaka, Ground state solutions for the nonlinear Choquard equation with prescribed mass, in: V.Ferone, T.Kawakami, P.Salani, F. Takahashi, (Eds.), Geometric Properties for Parabolic and Elliptic PDE’s, Springer, Cham, 2021, pp. 23-41. · Zbl 1475.35136
[12] Y. Ding and X. Zhong, Normalized solution to the Schrödinger equation with potential and general nonlinear term: Mass super-critical case, J. Differential Equations 334 (2022), 194-215, DOI: https://doi.org/10.1016/j.jde.2022.06.013. · Zbl 1496.35357 · doi:10.1016/j.jde.2022.06.013
[13] V. Dinh, Existence and stability of standing waves for nonlinear Schrödinger equation with a critical rotation speed, Lett. Math. Phys. 112 (2022), 53, 36pp. · Zbl 1492.35304
[14] V. Dinh, Remarks on nonlinear Schrödinger equations arising on rotational Bose-Einstein condensates, Nonlinear Anal. 214 (2022), 112587, 37pp. DOI: https://doi.org/10.1016/j.na.2021.112587. · Zbl 1479.35774 · doi:10.1016/j.na.2021.112587
[15] V. Dinh, L. Forcella, and H. Hajaiej, Mass-energy threshold dynamics for dipolar quantum gases, Commun. Math. Sci. 20 (2022), no. 1, 165-200, DOI: https://doi.org/10.4310/CMS.2022.v20.n1.a5. · Zbl 1479.35775 · doi:10.4310/CMS.2022.v20.n1.a5
[16] L. Diósi, Gravitation and quantum-mechanical localization of macro-objects, Phys. Lett. A 105 (1984), 199-202, DOI: https://doi.org/10.1016/0375-9601(84)90397-9. · doi:10.1016/0375-9601(84)90397-9
[17] L. Du, F. Gao, and M. Yang, On elliptic equations with Stein-Weiss type convolution parts, Math. Z. 301 (2022), 1-41, DOI: https://doi.org/10.1007/s00209-022-02973-1. · Zbl 1490.35179 · doi:10.1007/s00209-022-02973-1
[18] L. Erdos, B. Schlein, and H. Yau, Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate, Comm. Pure Appl. Math. 59 (2006), no. 12, 1659-1741, DOI: https://doi.org/10.1002/cpa.20123. · Zbl 1122.82018 · doi:10.1002/cpa.20123
[19] F. Gao and M. Yang, The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China Math. 61 (2018), no. 7, 1219-1242, DOI: https://doi.org/10.1007/s11425-016-9067-5. · Zbl 1397.35087 · doi:10.1007/s11425-016-9067-5
[20] J. Giacomoni, D. Goel, and K. Sreenadh, Regularity results on a class of doubly nonlocal problems, J. Differential Equations 268 (2020), 5301-5328, DOI: https://doi.org/10.1016/j.jde.2019.11.009. · Zbl 1433.35446 · doi:10.1016/j.jde.2019.11.009
[21] Y. Guo, Y. Luo, and S. Peng, Local uniqueness of ground-states for rotating Bose-Einstein condensates with attractive interactions, Calc. Var. Partial Differential Equations 60 (2021), no. 6, Paper No. 237, 27pp, DOI: https://doi.org/10.1007/s00526-021-02055-w. · Zbl 1477.35193 · doi:10.1007/s00526-021-02055-w
[22] Y. Guo, Y. Luo, and W. Yang, The nonexistence of vortices for rotating Bose-Einstein condensates with attractive interactions, Arch. Ration. Mech. Anal. 238 (2020)1231-1281, DOI: https://doi.org/10.1007/s00205-020-01564-w. · Zbl 1451.82005 · doi:10.1007/s00205-020-01564-w
[23] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28 (1997), 1633-1659, DOI: https://doi.org/10.1016/S0362-546X(96)00021-1. · Zbl 0877.35091 · doi:10.1016/S0362-546X(96)00021-1
[24] L. Jeanjean, J. Jendrej, T. Le, and N. Visciglia, Orbital stability of ground-states for a Sobolev critical Schrödinger equation, J. Math. Pures Appl. 164 (2022), 158-179, DOI: https://doi.org/10.1016/j.matpur.2022.06.005. · Zbl 1537.35324 · doi:10.1016/j.matpur.2022.06.005
[25] L. Jeanjean and T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger-Poisson-Slater equation, J. Differential Equations, 303 (2021), 277-325, DOI: https://doi.org/10.1016/j.jde.2021.09.022. · Zbl 1475.35163 · doi:10.1016/j.jde.2021.09.022
[26] M. Lewin, P. Nam, and N. Rougerie, The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6131-6157, DOI: https://doi.org/10.1090/tran/6537. · Zbl 1392.35245 · doi:10.1090/tran/6537
[27] M. Lewin, P. Nam, and N. Rougerie, Derivation of Hartree’s theory for generic mean-field Bose systems, Adv. Math. 254 (2014), 570-621, DOI: https://doi.org/10.1016/j.aim.2013.12.010. · Zbl 1316.81095 · doi:10.1016/j.aim.2013.12.010
[28] G. Li and H. Ye, The existence of positive solutions with L2-norm for nonlinear Choquard equation, J. Math. Phys. 55 (2014), 121501, DOI: https://doi.org/10.1063/1.4902386. · Zbl 1304.35587 · doi:10.1063/1.4902386
[29] X. Li and S. Ma, Ground states for Choquard equations with doubly critical exponents, Rocky Mountain J. Math. 49 (2019), no. 1, 153-170, DOI: https://doi.org/10.1216/RMJ-2019-49-1-153. · Zbl 1412.35122 · doi:10.1216/RMJ-2019-49-1-153
[30] Y. Li, G. Li, and C. Tang, Existence and concentration of ground-state solutions for Choquard equations involving critical growth and steep potential well, Nonlinear Anal. 200 (2020), no. 1, 111997, DOI: https://doi.org/10.1016/j.na.2020.111997. · Zbl 1448.35223 · doi:10.1016/j.na.2020.111997
[31] E. Lieb, R. Seiringer, and J. Yngvason, Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A 61 (2000), 043602, DOI: https://doi.org/10.1103/PhysRevA.61.043602. · doi:10.1103/PhysRevA.61.043602
[32] E. Lieb, R. Seiringer, and J. Yngvason, A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Comm. Math. Phys. 224 (2001), 17-31, DOI: https://doi.org/10.1007/s002200100533. · Zbl 0996.82010 · doi:10.1007/s002200100533
[33] E. Lieb, Existence and uniqueness of the minimizing solution of Choquardas nonlinear equation, Studies Appl. Math. 57 (1976/77), no. 2, 93-105, DOI: https://doi.org/10.1002/sapm197757293. · Zbl 0369.35022 · doi:10.1002/sapm197757293
[34] E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997. · Zbl 0905.11023
[35] P. Lions, The Choquard equation and related questions, Nonlinear Anal. 4 (1980), no. 6, 1063-1072, DOI: https://doi.org/10.1016/0362-546X(80)90016-4. · Zbl 0453.47042 · doi:10.1016/0362-546X(80)90016-4
[36] P. Lions, The concentration-compactness principle in the calculus of variations, the locally compact case, part 1, Ann. Inst. H. Poincaré Non Lineaire 1 (1984), 109-145, DOI: https://doi.org/10.1016/S0294-1449(16)30428-0. · Zbl 0541.49009 · doi:10.1016/S0294-1449(16)30428-0
[37] X. Luo and T. Yang, Multiplicity, asymptotics and stability of standing waves for nonlinear Schrödinger equation with rotation, J. Differential Equations 304 (2021), 326-347, DOI: https://doi.org/10.1016/j.jde.2021.10.003. · Zbl 1479.35810 · doi:10.1016/j.jde.2021.10.003
[38] V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), no. 2, 153-184, DOI: https://doi.org/10.1016/j.jfa.2013.04.007. · Zbl 1285.35048 · doi:10.1016/j.jfa.2013.04.007
[39] V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6557-6579, DOI: https://doi.org/10.1090/S0002-9947-2014-06289-2. · Zbl 1325.35052 · doi:10.1090/S0002-9947-2014-06289-2
[40] S. Pekar, Untersuchung ber die elektronentheorie der kristalle, Akademie Verlag, Berlin, 1954, DOI: https://doi.org/10.1515/9783112649305. · Zbl 0058.45503 · doi:10.1515/9783112649305
[41] R. Penrose, On gravityas role in quantum state reduction, Gen. Relativity Gravitation 28 (1996), no. 5, 581-600, DOI: https://doi.org/10.1007/BF02105068. · Zbl 0855.53046 · doi:10.1007/BF02105068
[42] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation, International Series of Monographs on Physics, vol. 116, The Clarendon Press, Oxford University Press, Oxford, 2003, https://global.oup.com/academic/product/bose-einstein-condensation-9780198507192?cc=cnlang=en. · Zbl 1110.82002
[43] L. Santos, G. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose-Einstein condensation in trapped dipolar gases, Phys. Rev. Lett. 85 (2000), 1791-1797, DOI: https://doi.org/10.1103/PhysRevLett.85.1791. · doi:10.1103/PhysRevLett.85.1791
[44] R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas, Comm. Math. Phys. 229 (2002), no. 3, 491-509, DOI: https://doi.org/10.1007/s00220-002-0695-2. · Zbl 1004.82003 · doi:10.1007/s00220-002-0695-2
[45] F. Selem, H. Hajaiej, P. Markowich, and S. Trabelsi, Variational approach to the orbital stability of standing waves of the Gross-Pitaevskii equation, Milan J. Math. 84 (2014), 273-295, DOI: https://doi.org/10.1007/s00032-014-0227-5. · Zbl 1304.35655 · doi:10.1007/s00032-014-0227-5
[46] N. Soave, Normalized ground-states for the NLS equation with combined nonlinearities: The Sobolev critical case, J. Funct. Anal. 279 (2020), 108610, DOI: https://doi.org/10.1016/j.jfa.2020.108610. · Zbl 1440.35311 · doi:10.1016/j.jfa.2020.108610
[47] Y. Su and Z. Liu, Semi-classical states to nonlinear Choquard equation with critical growth, Israel J Math. 255 (2023), 729-762. · Zbl 1519.35139
[48] A. Triay, Derivation of the dipolar Gross-Pitaevskii energy, SIAM J. Math. Anal. 50 (2018), 33-63, DOI: https://doi.org/10.1137/17M112378X. · Zbl 1387.35514 · doi:10.1137/17M112378X
[49] M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576, DOI: https://doi.org/10.1007/BF01208265. · Zbl 0527.35023 · doi:10.1007/BF01208265
[50] M. Yang, V. Radulescu, and X. Zhou, Critical Stein-Weiss elliptic systems: symmetry, regularity and asymptotic properties of solutions, Calc. Var. Partial Differential Equations 61 (2022), 109, DOI: https://doi.org/10.1007/s00526-022-02221-8. · Zbl 1492.35110 · doi:10.1007/s00526-022-02221-8
[51] S. Yao, H. Chen, V. Radulescu, and J. Sun, Normalized solutions for lower critical Choquard equations with critical Sobolev perturbations, SIAM J. Math. Anal. 54 (2022), 3696-3723, DOI: https://doi.org/10.1137/21M1463136. · Zbl 1497.35145 · doi:10.1137/21M1463136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.