×

Existence and stability of standing waves for nonlinear Schrödinger equations with a critical rotational speed. (English) Zbl 1492.35304

Summary: We study the existence and stability of standing waves associated with the Cauchy problem for the nonlinear Schrödinger equation (NLS) with a critical rotational speed and an axially symmetric harmonic potential. This equation arises as an effective model describing the attractive Bose-Einstein condensation in a magnetic trap rotating with an angular velocity. By viewing the equation as NLS with a constant magnetic field and with (or without) a partial harmonic confinement, we establish the existence and orbital stability of prescribed mass standing waves for the equation with mass-subcritical, mass-critical, and mass-supercritical nonlinearities. Our result extends a recent work of J. Bellazzini et al. [Commun. Math. Phys. 353, No. 1, 229–251 (2017; Zbl 1367.35150)], where the existence and stability of standing waves for the supercritical NLS with a partial confinement were established.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B35 Stability in context of PDEs
78A37 Ion traps
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)

Citations:

Zbl 1367.35150

References:

[1] Aftalion, A.: Vortices in Bose-Einstein condensates. In: Progress in Nonlinear Differential Equations and their Applications, vol. 67. Birkhäuser Boston, Inc., Boston (2006) · Zbl 1129.82004
[2] Anderson, MH; Ensher, JR; Matthews, MR; Wieman, CE; Cornell, EA, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269, 198 (1995) · doi:10.1126/science.269.5221.198
[3] Antonelli, P.; Marahrens, D.; Sparber, C., On the Cauchy problem for nonlinear Schrödinger equations with rotation, Discrete Contin. Dyn. Syst., 32, 3, 703-715 (2012) · Zbl 1234.35238 · doi:10.3934/dcds.2012.32.703
[4] Antonelli, P.; Carles, R.; Drumond Silva, J., Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Commun. Math. Phys., 334, 1, 367-396 (2015) · Zbl 1309.35124 · doi:10.1007/s00220-014-2166-y
[5] Arbunich, J.; Nenciu, I.; Sparber, C., Stability and instability properties of rotating Bose-Einstein condensates, Lett. Math. Phys., 109, 6, 1415-1432 (2019) · Zbl 1428.35429 · doi:10.1007/s11005-018-01149-5
[6] Ardila, AH; Hajaiej, H., Global well-posedness, blow-up and stability of standing waves for supercritical NLS with rotation, J. Dyn. Differ. Equ. (2021) · Zbl 1515.35238 · doi:10.1007/s10884-021-09976-2
[7] Bao, W.; Wang, H.; Markowich, PA, Ground, symmetric and central vortex states in rotating Bose-Einstein condensates, Commun. Math. Sci., 3, 1, 57-88 (2005) · Zbl 1073.82004 · doi:10.4310/CMS.2005.v3.n1.a5
[8] Bao, W.; Cai, Y., Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6, 1, 1-135 (2013) · Zbl 1266.82009 · doi:10.3934/krm.2013.6.1
[9] Basharat, N., Hajaiej, H., Hu, Y., Zheng, S., Threshold for blowup and stability for nonlinear Schrödinger equation with rotation. Preprint, arXiv:2002.04722
[10] Bellazzini, J.; Boussaïd, N.; Jeanjean, L.; Visciglia, N., Existence and stability of standing waves for supercritical NLS with a partial confinement, Commun. Math. Phys., 353, 1, 229-251 (2017) · Zbl 1367.35150 · doi:10.1007/s00220-017-2866-1
[11] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 3, 486-490 (1983) · Zbl 0526.46037 · doi:10.1090/S0002-9939-1983-0699419-3
[12] Cai, Y.: Mathematical theory and numerical methods for the Gross-Piatevskii equations and applications. Ph.D. Thesis, National Universtiy of Singapore (2011)
[13] Carles, R.; Ardila, AH, Global dynamics below the ground states for NLS under partial harmonic confinement, Commun. Math. Sci., 19, 4, 993-1032 (2021) · Zbl 1475.35309 · doi:10.4310/CMS.2021.v19.n4.a6
[14] Carles, R., Dinh, V.D., Hajaiej, H.: On stability of rotational 2D binary Bose-Einstein condensates. Annales de Faculté des Sciences de Toulouse Mathématiques. arXiv:2010.06862
[15] Castin, Y.; Dum, R., Bose-Einstein condensates with vortices in rotating traps, Eur. Phys. J. D, 7, 399-412 (1999) · doi:10.1007/s100530050584
[16] Cazenave, T.; Esteban, MJ, On the stability of stationary states for nonlinear Schrödinger equations with an external magnetic field, language=English, with Portuguese summary, Mat. Apl. Comput., 7, 3, 155-168 (1988) · Zbl 0681.35011
[17] Cazenave, T.: Semilinear Schrödinger equations. In: Courant Lecture Notes in Mathematics, vol.10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003) · Zbl 1055.35003
[18] Davis, KB; Mewes, MO; Andrews, MR; van Druten, NJ; Durfee, DS; Kurn, DM; Ketterle, W., Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75, 3369 (1995)
[19] Dinh, VD, Remarks on nonlinear Schrödinger equations arising on rotational Bose-Einstein condensates, Nonlinear Anal., 214, 112587 (2022) · Zbl 1479.35774 · doi:10.1016/j.na.2021.112587
[20] Dinh, V.D.: On the stability of Bose-Einstein Condensation with a toroidal trap (in progress)
[21] Esteban, M.J., Lions, P.L.: Stationary solutions of nonlinear Schrödinger equations with an external magnetic field. In: Partial Differential Equations and the Calculus of Variations, vol. I, Progr. Nonlinear Differential Equations Appl., vol. 1, pp. 401-449. Birkhäuser Boston, Boston (1989) · Zbl 0702.35067
[22] Feder, DL; Clark, W.; Schneider, BI, Nucleation of vortex arrays in rotating anisotropic Bose-Einstein condensates, Phys. Rev. A, 61, 1, 011601 (1999) · doi:10.1103/PhysRevA.61.011601
[23] Fetter, AL, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys., 81, 2, 647-691 (2009) · doi:10.1103/RevModPhys.81.647
[24] García-Ripoll, JJ; Perez-Garcia, VM, Stability of vortices in inhomogeneous Bose condensates subject to rotation: a three-dimensional analysis, Phys. Rev. A, 60, 6, 4864 (1999) · doi:10.1103/PhysRevA.60.4864
[25] Gonçalves Ribeiro, JM, Finite time blow-up for some nonlinear Schrödinger equations with an external magnetic field, Nonlinear Anal., 16, 11, 941-948 (1991) · Zbl 0734.35127 · doi:10.1016/0362-546X(91)90098-L
[26] Guo, Y.; Luo, Y.; Yang, W., The nonexistence of vortices for rotating Bose-Einstein condensates with attractive interactions, Arch. Ration. Mech. Anal., 238, 3, 1231-1281 (2020) · Zbl 1451.82005 · doi:10.1007/s00205-020-01564-w
[27] Guo, Y.: The nonexistence of vortices for rotating Bose-Einstein condensates in non-radially symmetric traps. Preprint, arXiv:2010.05592
[28] Guo, Y.; Luo, Y.; Peng, S., Local uniqueness of ground states for rotating Bose-Einstein condensates with attractive interactions, Calc. Var. Partial Differ. Equ., 60, 6, 1-27 (2021) · Zbl 1477.35193
[29] Guo, Y., Luo, Y., Peng, S.: Existence and asymptotic behavior of ground states for rotating Bose-Einstein condensates. Preprint, arXiv:2106.14369
[30] Hao, C.; Hsiao, L.; Li, H., Global well posedness for the Gross-Pitaevskii equation with an angular momentum rotational term, Math. Methods Appl. Sci., 31, 6, 655-664 (2008) · Zbl 1132.35476 · doi:10.1002/mma.931
[31] Hao, C.; Hsiao, L.; Li, H., Global well posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions, J. Math. Phys., 48, 10, 102105 (2007) · Zbl 1152.81463 · doi:10.1063/1.2795218
[32] Ignat, R.; Millot, V., The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate, J. Funct. Anal., 233, 260-306 (2006) · Zbl 1106.58009 · doi:10.1016/j.jfa.2005.06.020
[33] Lewin, M., Nam, P.T., Rougerie, N.: Blow-up profile of rotating 2D focusing Bose gases. In: Cadamuro, D., Duell, M., Dybalski, W., Simonella, S. (eds.) Macroscopic Limits of Quantum Systems, Springer Proceedings in Mathematics & Statistics, vol. 270, no. 1562 (2018) · Zbl 1414.82032
[34] Lieb, E.; Seiringer, R., Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Commun. Math. Phys., 264, 505-537 (2006) · Zbl 1233.82004 · doi:10.1007/s00220-006-1524-9
[35] Lieb, EH; Loss, M., Analysis. Graduate Studies in Mathematics (2001), Providence: American Mathematical Society, Providence · Zbl 0966.26002
[36] Lü, Z.; Liu, Z., Sharp thresholds of Bose-Einstein condensates with an angular momentum rotational term, J. Appl. Math. Inform., 29, 3-4, 901-908 (2011) · Zbl 1236.35128
[37] Luo, X.; Yang, T., Multiplicity, asymptotics and stability of standing waves for nonlinear Schrödinger equation with rotation, J. Differ. Equ., 304, 326-347 (2021) · Zbl 1479.35810 · doi:10.1016/j.jde.2021.10.003
[38] Madison, KW; Chevy, F.; Wohlleben, W.; Dalibard, J., Vortex formation in a stirred Bose-Einstein condensate, Phys. Rev. Lett., 84, 2498 (2000) · doi:10.1103/PhysRevLett.84.806
[39] Seiringer, R., Gross-Pitaevskii theory of the rotating Bose gas, Commun. Math. Phys., 229, 491-509 (2002) · Zbl 1004.82003 · doi:10.1007/s00220-002-0695-2
[40] Williams, JE; Hooand, MJ, Preparing topological states of a Bose-Einstein condensate, Nature, 401, 568 (1999) · doi:10.1038/44095
[41] Wei, J., Wu, Y.: On some nonlinear Schrödinger equations in \({R}^N\). Preprint arXiv:2112.04746
[42] Yajima, K., Schrödinger evolution equations with magnetic fields, J. Anal. Math., 56, 29-76 (1991) · Zbl 0739.35083 · doi:10.1007/BF02820459
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.