×

Semiclassical states to the nonlinear Choquard equation with critical growth. (English) Zbl 1519.35139

Summary: We are concerned with the following Choquard equation: \[ - {\varepsilon^2}\Delta u + V(x)u = {\varepsilon^{- \alpha}}({I_\alpha} * F(u)){F^\prime}(u), \quad x \in{\mathbb{R}^N}, \] where \(N \geqslant 4\), \(\alpha \in (0, N)\), \(I_\alpha\) is the Riesz potential and \(\varepsilon > 0\) is a small parameter. Note that \(F(u): = \frac{1}{q} |u|^q + \frac{1}{2_\alpha^*} |u|^{2_\alpha^*}\), where \(2_{\alpha}^{\#} < q < {2_{\alpha}^*}\), and \(2_\alpha^\sharp : = \frac{N + \alpha}{N}\) and \(2_\alpha^* : = \frac{N + \alpha}{N - 2}\) are lower and upper critical exponents in the sense of the Hardy-Littlewood-Sobolev inequality. In this paper, we construct a bound-state concentrating at an isolated component of the positive local minimum points of \(V\) as \(\varepsilon \rightarrow 0\) for each \(q \in (2_{\alpha}^{\#}, 2_{\alpha}^*)\). This result extends some results established in [S. Cingolani and K. Tanaka, Rev. Mat. Iberoam. 35, No. 6, 1885–1924 (2019; Zbl 1431.35169)] for the case \(q < 2\) which was seen as an open problem in [V. Moroz and J. van Schaftingen, Calc. Var. Partial Differ. Equ. 52, No. 1–2, 199–235 (2015; Zbl 1309.35029)]. The proof of the current paper uses variational methods, a truncation technique and a new regularity result that we develop in this work.

MSC:

35J61 Semilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Alves, C. O.; Gao, F.; Squassina, M.; Yang, M., Singularly perturbed critical Choquard equations, Journal of Differential Equations, 263, 3943-3988 (2017) · Zbl 1378.35113
[2] Ambrosio, V., Concentration phenomena for a fractional Choquard equation with magnetic field, Dynamics of Partial Differential Equations, 16, 125-149 (2019) · Zbl 1409.35211
[3] Ambrosio, V., Multiplicity and concentration results for a fractional Choquard equation via penalization method, Potential Analysis, 50, 55-82 (2019) · Zbl 1408.35001
[4] Byeon, J.; Jeanjean, L., Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Archive for Rational Mechanics and Analysis, 185, 185-200 (2007) · Zbl 1132.35078
[5] Byeon, J.; Jeanjean, L., Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity, Discrete and Continuous Dynamical Systems, 19, 255-269 (2007) · Zbl 1155.35089
[6] Byeon, J.; Wang, Z., Standing waves with a critical frequency for nonlinear Schrödinger equations. II, Calculus of Variations and Partial Differential Equations, 18, 207-219 (2003) · Zbl 1073.35199
[7] Cassani, D.; Zhang, J., Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth, Advances in Nonlinear Analysis, 8, 1184-1212 (2019) · Zbl 1418.35168
[8] Cassani, D.; Van Schaftingen, J.; Zhang, J., Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 15, 1377-1400 (2020) · Zbl 1437.35329
[9] Cingolani, S.; Secchi, S.; Squassina, M., Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 140, 973-1009 (2010) · Zbl 1215.35146
[10] Cingolani, S.; Clapp, M.; Secchi, S., Multiple solutions to a magnetic nonlinear Choquard equation, Zeitschrift für Angewandte Mathematik und Physik, 63, 233-248 (2012) · Zbl 1247.35141
[11] Cingolani, S.; Tanaka, K., Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well, Revista Matemática Iberoamericana, 35, 1885-1924 (2019) · Zbl 1431.35169
[12] del Pino, M.; Felmer, P. L., Semi-classical states for nonlinear Schrödinger equations, Journal Functional Analysis, 149, 245-265 (1997) · Zbl 0887.35058
[13] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, Journal of Functional Analysis, 69, 397-408 (1986) · Zbl 0613.35076
[14] Gallo, M., Multiplicity and concentration results for local and fractional NLS equations with critical growth, Advances in Differential Equations, 26, 397-424 (2021) · Zbl 1487.35034
[15] Gao, F.; Yang, M., The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Science China Mathematics, 61, 1219-1242 (2018) · Zbl 1397.35087
[16] Giacomoni, J.; Goel, D.; Sreenadh, K., Regularity results on a class of doubly nonlocal problems, Journal of Differential Equations, 268, 5301-5328 (2020) · Zbl 1433.35446
[17] Ji, C.; Rădulescu, V. D., Concentration phenomena for nonlinear magnetic Schrödinger equations with critical growth, Israel Journal of Mathematics, 241, 465-500 (2021) · Zbl 1465.35140
[18] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Applied Mathematics, 57, 93-105 (1976) · Zbl 0369.35022
[19] Lieb, E. H.; Loss, M., Analysis (2001), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0966.26002
[20] Lions, P. L., The Choquard equation and related questions, Nonlinear Analysis, 4, 1063-1072 (1980) · Zbl 0453.47042
[21] Lions, P. L., Compactness and topological methods for some nonlinear variational problems of mathematical physics, Nonlinear Problems: Present and Future (Los Alamos, NM, 1981), 17-34 (1982), Amsterdam-New York: North-Holland, Amsterdam-New York · Zbl 0496.35079
[22] Liu, X.; Ma, S.; Xia, J., Multiple bound states of higher topological type for semiclassical Choquard equations, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 151, 329-355 (2021) · Zbl 1459.35178
[23] Ma, L.; Zhao, L., Classification of positive solitary solutions of the nonlinear Choquard equation, Archive for Rational Mechanics and Analysis, 195, 455-467 (2010) · Zbl 1185.35260
[24] Moroz, V.; Van Schaftingen, J., Existence of groundstates for a class of nonlinear Choquard equations, Transactions of the American Mathematical Society, 367, 6557-6579 (2015) · Zbl 1325.35052
[25] V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Communications in Contemporary Mathematics 17 (2015), Article no. 1550005. · Zbl 1326.35109
[26] Moroz, V.; Van Schaftingen, J., Semi-classical states for the Choquard equation, Calculus of Variations and Partial Differential Equations, 52, 199-235 (2015) · Zbl 1309.35029
[27] Moroz, V.; Van Schaftingen, J., A guide to the Choquard equation, Journal of Fixed Point Theory and Applications, 19, 773-813 (2017) · Zbl 1360.35252
[28] T. Mukherjee and K. Sreenadh, Fractional Choquard equation with critical nonlinearities, Nonlinear Differential Equations and Applications 24 (2017), Article no. 63. · Zbl 1387.35608
[29] Oh, Y., Correction to: “Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)_a”, Communications in Partial Differential Equations, 14, 833-834 (1989) · Zbl 0714.35078
[30] Palatucci, G.; Pisante, A., Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calculus of Variations and Partial Differential Equations, 50, 799-829 (2014) · Zbl 1296.35064
[31] Pekar, S., Untersuchungüber die elektronentheorie der kristalle (1954), Berlin: Akademie, Berlin · Zbl 0058.45503
[32] Penrose, R., On gravity’s role in quantum state reduction, General Relativity and Gravitation, 28, 581-600 (1996) · Zbl 0855.53046
[33] S. Qi and W. Zou, Semiclassical states for critical Choquard equations, Journal of Mathematical Analysis and Applications 498 (2021), Article no. 124985. · Zbl 1459.35018
[34] Rabinowitz, P. H., On a class of nonlinear Schrödinger equations, Zeitschrift für Angewandte Mathematik und Physik, 43, 270-291 (1992) · Zbl 0763.35087
[35] Rabinowitz, P. H., Minimax Methods in Critical Point Theory With Applications to Differential Equations (1986), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0609.58002
[36] Secchi, S., A note on Schrödinger-Newton systems with decaying electric potential, Nonlinear Analysis, 72, 3842-3856 (2010) · Zbl 1187.35254
[37] Seok, J., Nonlinear Choquard equations: doubly critical case, Applied Mathematics Letters, 76, 148-156 (2018) · Zbl 1384.35032
[38] Y. Su, New result for nonlinear Choquard equations: doubly critical case, Applied Mathematics Letters 102 (2020), Article no. 106092. · Zbl 1440.35142
[39] Y. Su, L. Wang, H. Chen and S. Liu, Multiplicity and concentration results for fractional Choquard equations: doubly critical case, Nonlinear Analysis 198 (2020), Article no. 111872. · Zbl 1440.35143
[40] X. Sun and Y. Zhang, Multi-peak solution for nonlinear magnetic Choquard type equation, Journal of Mathematical Physics 55 (2014), Article no. 031508. · Zbl 1296.35180
[41] J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, Journal of Mathematical Physics 50 (2009), Article no. 012905. · Zbl 1189.81061
[42] Willem, M., Minimax Theorems (1996), Boston, MA: Birkhäauser, Boston, MA · Zbl 0856.49001
[43] Yang, M.; Ding, Y., Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part, Communications on Pure and Applied Analysis, 12, 771-783 (2013) · Zbl 1270.35218
[44] Yang, M.; Zhang, J.; Zhang, Y., Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity, Communications on Pure and Applied Analysis, 16, 493-512 (2017) · Zbl 1364.35027
[45] Zhang, J.; Chen, Z.; Zou, W., Standing waves for nonlinear Schrödinger equations involving critical growth, Journal of the London Mathematical Society, 90, 827-844 (2014) · Zbl 1317.35247
[46] Zhang, J.; Zou, W., Solutions concentrating around the saddle points of the potential for critical Schrödinger equations, Calculus of Variations and Partial Differential Equations, 54, 4119-4142 (2015) · Zbl 1339.35109
[47] Zhang, J.; do Ó, J., Standing waves for nonlinear Schrödinger equations involving critical growth of Trudinger-Moser type, Zetischrift für Angewandte Mathematik und Physik, 66, 3049-3060 (2015) · Zbl 1334.35328
[48] Zhang, J.; Wu, Q.; Qin, D., Semiclassical solutions for Choquard equations with Berestycki-Lions type conditions, Nonlinear Analysis, 188, 22-49 (2019) · Zbl 1429.35093
[49] Zhang, J.; Lü, W.; Lou, Z., Multiplicity and concentration behavior of solutions of the critical Choquard equation, Applicable Analysis, 100, 167-190 (2021) · Zbl 1455.35096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.