×

Variational approach to the orbital stability of standing waves of the Gross-Pitaevskii equation. (English) Zbl 1304.35655

Summary: This paper is concerned with the mathematical analysis of a masssubcritical nonlinear Schrödinger equation arising from fiber optic applications. We show the existence and symmetry of minimizers of the associated constrained variational problem. We also prove the orbital stability of such solutions referred to as standing waves and characterize the associated orbit. In the last section, we illustrate our results with few numerical simulations.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J60 Nonlinear elliptic equations
37J10 Symplectic mappings, fixed points (dynamical systems) (MSC2010)
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
78A60 Lasers, masers, optical bistability, nonlinear optics
35B35 Stability in context of PDEs
35B32 Bifurcations in context of PDEs
35A15 Variational methods applied to PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
90C52 Methods of reduced gradient type
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
Full Text: DOI

References:

[1] G. P. Agrawal, Nonlinear Fiber Optics. Academic Press, 2007. · Zbl 0693.35132
[2] W. Bao and Qiang Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. Siam J. Sci. Comput., 25(5) (2006), 1674-1697. · Zbl 1061.82025
[3] Berestycki H., Cazenave T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. C. R. Acad. Sci. Paris. 293, 489-492 (1981) · Zbl 0492.35010
[4] Bruneau C.H., Di Menza L., Lehner T.: Numerical resolution of some nonlinear Schröinger-like equations in plasmas. Numer. Methods for Partial Differential Equations, 15, 672-696 (1999) · Zbl 0957.76050 · doi:10.1002/(SICI)1098-2426(199911)15:6<672::AID-NUM5>3.0.CO;2-J
[5] Carles R.: Critical nonlinear Schrödinger equation with and without harmonic potential. Math. Models Meth. Appl. Sci. 12, 1513-1523 (2002) · Zbl 1029.35208 · doi:10.1142/S0218202502002215
[6] Carles R.: Remarks on the nonlinear Schrödinger equation with harmonic potential. Ann. Henri Poincaré 3, 757-772 (2002) · Zbl 1021.81013 · doi:10.1007/s00023-002-8635-4
[7] Cazenave T., Lions P.L.: Orbital stability of standing wave for some Schrödinger equations. Comm. Math. Phys. 85, 549-561 (1982) · Zbl 0513.35007 · doi:10.1007/BF01403504
[8] T. Cazenave, Semilinear Schrödinger equations. Courant Lecture Notes Vol. 10, American Mathematical Society, Provi- dence, RI, (2003) · Zbl 1055.35003
[9] Cipolatti R.: On the instability of ground states for a Davey-Stewartson system. Ann. Inst. H. Poincaré Phys. Théor. 58, 85-104 (1993) · Zbl 0784.35106
[10] R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials. Advances in Differential Equations. Vol. 10 No. 2 (2005), 259-276. · Zbl 1107.35100
[11] R. Fukuizumi and M. Ohta, Instability of standing waves for the nonlinear Schrödinger equation with potentials. Differential and Integral Equations Vol. 6, No. 16 (2003) 691- 706. · Zbl 1031.35131
[12] R. Fukuizumi and M. Ohta, Stability of standing waves for nonlinear Schrödinger equations with potentials. Differential and Integral Equations. Vol.16 No. 1 (2003), 111-128. · Zbl 1031.35132
[13] R. Fukuizumi, Stability and instability of standing waves for the Schrödinger equation with harmonic potential. Discrete an continuous dynamical systems Vol. 7 No. 3 (2001), 525-544. · Zbl 0992.35094
[14] Fukuizumi R., Hadj Selem F., Kikuchi H.: Stationary problem related to nonlinear Schrödinger equations on the unit ball. Nonlinearity 25, 2271-2301 (2012) · Zbl 1254.35207 · doi:10.1088/0951-7715/25/8/2271
[15] Gonçcalves Rebeiro J.M.: Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field. Ann. Inst. H. Poincaré Phys. Théor. 54, 403-433 (1991) · Zbl 0741.35080
[16] Grandall M.G., Rabinowitz P.G.: Bifurcation from a simple eigenvalue, J. Functional Analysis 8, 321-340 (1991) · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[17] Grillakis M., Shatah J., Strausz W.A.: Stability theory of solitary waves in presence of symmetry I, J. Funct. Anal. 74, 160-197 (1987) · Zbl 0656.35122 · doi:10.1016/0022-1236(87)90044-9
[18] Guo Y., Seiringer R.: On the Mass Concentration for BoseEinstein Condensates with Attractive Interactions. Lett. Math. Phys. 104, 141-156 (2014) · Zbl 1311.35241 · doi:10.1007/s11005-013-0667-9
[19] F. Hadj Selem, Etude théorique et numérique d’états stationnaires localisés pour l’équation de Schrödinger non linéaire avec potentiel quadratique, thèse d’Etat 2010.
[20] F. Hadj Selem, Radial solutions with prescribed numbers of zeros for the nonlinear Schrödinger equation with harmonic potential. Nonlinearity 24 (2011), 1795-1819. · Zbl 1221.35402
[21] H. Hajaiej, Cases of equality and strict inequality in the extended HardyLittlewood inequalities. Proc. Royal Soc. Edin. A 05 (2005), 135(03), 643-662. · Zbl 1102.26013
[22] H. Hajaiej, P.A. Markowich and S. Trabelsi, Minimizers of a class of constrained vectorial variational problems: Part I. Milan J. Math. Vol 82 (2014), 81-98. · Zbl 1307.49012
[23] Z. Han-Lei and G. Qiang, Dynamics of Bose-Einstein condensates in a one-dimensiona l optical lattice with double-well potential. Frontiers of Physics, Vol. 8, Issue 4 (2013), 375-380.
[24] M. Hirose and M. Ohta, Structure of positive radial solution of scalar field equations with harmonic potential. J. Diff. eqt. bf(178)(2) (2002), 519-540. · Zbl 1011.34039
[25] Hirose M., Ohta M.: Uniqueness of positive solutions to scalar field equation with harmonic potential. Funkcial Ekvac. 50, 67-100 (2007) · Zbl 1160.34014 · doi:10.1619/fesi.50.67
[26] Jackson R.K., Weinstein M.K: Geometric analysis of bifurcation and symmetry breaking in Gross-Pitaevskii equation. J. Stat. Phys. 116, 881-905 (2004) · Zbl 1138.81015 · doi:10.1023/B:JOSS.0000037238.94034.75
[27] E.W.Kirr, P.G. Kevrekidis, E. Shlizerman, M.I. Weinstein, Symmetry-breaking bifurcation in nonlinear Schrödinger/GrossPitaevskii equations. SIAM J. Math. Anal. 40 (2008), 566-604. · Zbl 1157.35479
[28] Kirr E.W., Kevrekidis P.G., Pelinovsky D.E.: Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials. Commun.Math. Phys. 308(3), 795-844 (2011) · Zbl 1235.34128 · doi:10.1007/s00220-011-1361-3
[29] B. Noris, H. Tavares and G. Verzini, Existence and orbital stability of the ground states with prescribed mass for the L2-critical and supercritical NLS on bounded domains.arXiv:1307.3981. · Zbl 1314.35168
[30] Oh Y.G.: Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equations with potentials. J. Differ. Equations 81, 255-274 (1989) · Zbl 0703.35158 · doi:10.1016/0022-0396(89)90123-X
[31] Oh Y.G.: Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials. Comm. Math. Phys. 121, 11-33 (1989) · Zbl 0693.35132 · doi:10.1007/BF01218621
[32] Ohta M.: Instability of standing waves for the generalized Davey-Stewartson sysytem. Ann. Inst. H. Poincaré Phys. Théor. 62, 69-80 (1995) · Zbl 0839.35012
[33] Ohta M.: Stability of standing waves for the generalized Davey-Stewartson system. J. Dynam. Differential. Equations. 6, 325-334 (1994) · Zbl 0805.35098 · doi:10.1007/BF02218533
[34] Rabinowitz P.H.: Some global results for nonlinear eigenvalues problems. J. Functional Analysis 7, 487-513 (1971) · Zbl 0212.16504 · doi:10.1016/0022-1236(71)90030-9
[35] H.A. Rose, and M.I. Weinstein, On the bound states of the nonlinear Schrödinger equation with a linear potential. Phys. D. 30 (1988), 207-218. · Zbl 0694.35202
[36] Shatah J., Strauss W.: Instability of nonlinear bound states. Commun. Math. Phys. 100, 173-190 (1985) · Zbl 0603.35007 · doi:10.1007/BF01212446
[37] T. Tsurumi and M. Wadati, Collapses of wave functions in multidimensional nonlinear Schrödinger equations under harmonic potential. J. Phys. Soc. Jpn. 66 (1997), 3031- 3034. · Zbl 0973.76623
[38] Weinstein M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39, 51-68 (1986) · Zbl 0594.35005 · doi:10.1002/cpa.3160390103
[39] Zhang J.: Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. Z. Angew. Math. Phys. 51, 498-503 (2000) · Zbl 0985.35085 · doi:10.1007/PL00001512
[40] Zhang J.: Stability of attractive Bose-Einstein condensates. J. Stat. Phys. 101, 731-746 (2000) · Zbl 0989.82024 · doi:10.1023/A:1026437923987
[41] Zhang J.: Sharp threshold for global existence and blowup in nonlinear Schrödinger equation with harmonic potential. Commun. Partial Differ. Equ. 30, 1429-1443 (2005) · Zbl 1081.35109 · doi:10.1080/03605300500299539
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.