×

Remarks on nonlinear Schrödinger equations arising on rotational Bose-Einstein condensates. (English) Zbl 1479.35774

Author’s abstract: In this paper, we study the Cauchy problem for nonlinear Schrödinger equations arising as an effective model of the Bose-Einstein condensate in a magnetic trap rotating with an angular velocity. We first establish sufficient conditions showing the existence of global-in-time and finite time blow-up solutions to the equation. We next derive sharp thresholds for global existence versus finite time blow-up in the mass-critical and mass-supercritical cases. We also study the existence and strong instability of ground state standing waves related to the equation. Finally we prove the existence, non-existence, and orbital stability of prescribed mass standing waves when the rotational speed is smaller than a critical value.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B44 Blow-up in context of PDEs
Full Text: DOI

References:

[1] Antonelli, P.; Marahrens, D.; Sparber, C., On the Cauchy problem for nonlinear Schrödinger equations with rotation, Discrete Contin. Dyn. Syst., 32, 3, 703-715 (2012) · Zbl 1234.35238
[2] Arbunich, J.; Nenciu, I.; Sparber, C., Stability and instability properties of rotating Bose-Einstein condensates, Lett. Math. Phys., 109, 6, 1415-1432 (2019) · Zbl 1428.35429
[3] Ardila, A. H.; Hajaiej, H., Global well-posedness, blow-up and stability of standing waves for supercritical NLS with rotation, J. Dynam. Differential Equations (2021), in press. http://dx.doi.org/10.1007/s10884-021-09976-2 · Zbl 1515.35238
[4] Bao, W.; Cai, Y., Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6, 1, 1-135 (2013) · Zbl 1266.82009
[5] Bao, W.; Wang, H.; Markowich, P. A., Ground, symmetric and central vortex states in rotating Bose-Einstein condensates, Commun. Math. Sci., 3, 1, 57-88 (2005) · Zbl 1073.82004
[6] N. Basharat, H. Hajaiej, Y. Hu, S. Zheng, Threshold for blowup and stability for nonlinear Schrödinger equation with rotation, Preprint, available at arXiv:2002.04722.
[7] Bellazzini, J.; Boussaïd, N.; Jeanjean, L.; Visciglia, N., Existence and stability of standing waves for supercritical NLS with a partial confinement, Comm. Math. Phys., 353, 1, 229-251 (2017) · Zbl 1367.35150
[8] N. Boussaïd, H. Hajaiej, S. Ibrahim, L. Michel, On the global Cauchy problem for nonlinear Schrödinger equation with magnetic potential, Preprint.
[9] Carles, R., Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., 9, 4, 937-964 (2011) · Zbl 1285.35105
[10] Castin, Y.; Dum, R., Bose-Einstein condensates with vortices in rotating traps, Eur. Phys. J. D, 7, 399-412 (1999)
[11] Cazenave, T., (Semilinear Schrödinger Equations. Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10 (2003), New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI), xiv+323 · Zbl 1055.35003
[12] D.V. Dinh, Existence and stability of standing waves for nonlinear Schröringer equation with a critical rotational speed, Preprint.
[13] Duyckaerts, T.; Roudenko, S., Going beyond the threshold: scattering and blow-up in the focusing NLS equation, Comm. Math. Phys., 334, 3, 1573-1615 (2015) · Zbl 1309.35131
[14] Esteban, M. J.; Lions, P. L., Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, (Partial Differential Equations and the Calculus of Variations, I. Partial Differential Equations and the Calculus of Variations, I, Progr. Nonlinear Differential Equations Appl., vol. 1 (1989), Birkhäuser Boston, Boston, MA), 401-449 · Zbl 0702.35067
[15] Feder, D. L.; Clark, W.; Schneider, B. I., Nucleation of vortex arrays in rotating anisotropic Bose-Einstein condensates, Phys. Rev. A, 61, 1, Article 011601 pp. (1999)
[16] Fetter, A. L., Rotating trapped Bose-Einstein condensates, Rev. Modern Phys., 81, 647-691 (2009)
[17] García-Ripoll, J. J.; Perez-Garcia, V. M., Stability of vortices in inhomogeneous Bose condensates subject to rotation: A three-dimensional analysis, Phys. Rev. A, 60, 6, 4864 (1999)
[18] Y. Guo, The nonexistence of vortices for rotating Bose-Einstein condensates in non-radially symmetric traps, Preprint, available at arxiv:2010.05592.
[19] Y. Guo, Y. Luo, S. Peng, Local uniqueness of ground states for rotating Bose-Einstein condensates with attractive interactions, Preprint, Available At ArXiv:2009.08013.
[20] Guo, Y.; Luo, Y.; Yang, W., The nonexistence of vortices for rotating Bose-Einstein condensates with attractive interactions, Arch. Ration. Mech. Anal., 238, 3, 1231-1281 (2020) · Zbl 1451.82005
[21] Hao, C.; Hsiao, L.; Li, H., Global well posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions, J. Math. Phys., 48, 10, 102105, 11 (2007) · Zbl 1152.81463
[22] Hao, C.; Hsiao, L.; Li, H., Global well posedness for the Gross-Pitaevskii equation with an angular momentum rotational term, Math. Methods Appl. Sci., 31, 6, 655-664 (2008) · Zbl 1132.35476
[23] Ignat, R.; Millot, V., The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate, J. Funct. Anal., 233, 260-306 (2006) · Zbl 1106.58009
[24] Lewin, M.; Nam, P. T.; Rougerie, N., Blow-up profile of rotating 2D focusing Bose gases, (Cadamuro, D.; Duell, M.; Dybalski, W.; Simonella, S., Macroscopic Limits of Quantum Systems. Macroscopic Limits of Quantum Systems, Springer Proceedings in Mathematics & Statistics, vol. 270 (2018)), 1562 · Zbl 1414.82032
[25] Lieb, E. H.; Loss, M., (Analysis. Analysis, Graduate Studies in Mathematics, vol. 14 (2001), American Mathematical Society, Providence, RI), xxii+346 · Zbl 0966.26002
[26] Lieb, E.; Seiringer, R., Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Comm. Math. Phys., 264, 505-537 (2006) · Zbl 1233.82004
[27] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 2, 109-145 (1984), English, with French summary · Zbl 0541.49009
[28] Lü, Z.; Liu, Z., Sharp thresholds of Bose-Einstein condensates with an angular momentum rotational term, J. Appl. Math. Inform., 29, 3-4, 901-908 (2011) · Zbl 1236.35128
[29] X. Luo, T. Yang, Multiplicity, asymptotics and stability of standing waves for nonlinear Schrödinger equation with rotation, Preprint, available at arxiv:2008.10811. · Zbl 1479.35810
[30] Matsumoto, H.; Ueki, N., Spectral analysis of Schrödinger operators with magnetic fields, J. Funct. Anal., 140, 1, 218-255 (1996) · Zbl 0866.35083
[31] Ohta, M., Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential, Funkcial. Ekvac., 61, 1, 135-143 (2018) · Zbl 1434.35187
[32] Seiringer, R., Gross-Pitaevskii theory of the rotating Bose gas, Comm. Math. Phys., 229, 491-509 (2002) · Zbl 1004.82003
[33] Weinstein, M. I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87, 4, 567-576 (1982) · Zbl 0527.35023
[34] Zhang, J., Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys., 51, 3, 498-503 (2000) · Zbl 0985.35085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.