×

Multiple normalized solutions for a Sobolev critical Schrödinger-Poisson-Slater equation. (English) Zbl 1475.35163

Summary: We look for solutions to the Schrödinger-Poisson-Slater equation \[- \Delta u + \lambda u - \gamma ( | x |^{- 1} \ast | u |^2 ) u - a | u |^{p - 2} u = 0 \text{ in } \mathbb{R}^3 ,\tag{0.1}\] which satisfy \[ \| u \|_{L^2 ( \mathbb{R}^3 )}^2 = c\] for some prescribed \(c > 0\). Here \(u \in H^1( \mathbb{R}^3)\), \(\gamma \in \mathbb{R}\), \(a \in \mathbb{R}\) and \(p \in(\frac{ 10}{ 3}, 6]\). When \(\gamma > 0\) and \(a > 0\), both in the Sobolev subcritical case \(p \in(\frac{ 10}{ 3}, 6)\) and in the Sobolev critical case \(p = 6\), we show that there exists a \(c_1 > 0\) such that, for any \(c \in(0, c_1)\), (0.1) admits two solutions \(u_c^+\) and \(u_c^-\) which can be characterized respectively as a local minima and as a mountain pass critical point of the associated Energy functional restricted to the norm constraint. In the case \(\gamma > 0\) and \(a < 0\), we show that, for any \(p \in(\frac{ 10}{ 3}, 6]\) and any \(c > 0\), (0.1) admits a solution which is a global minimizer. Finally, in the case \(\gamma < 0, a > 0\) and \(p = 6\) we show that (0.1) does not admit positive solutions.

MSC:

35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs

References:

[1] Alves, Claudianor O.; Ji, Chao; Miyagaki, Olimpio H., Normalized solutions for a Schrödinger equation with critical growth in \(\mathbb{R}^N (2021)\)
[2] Armstrong, Scott N.; Sirakov, Boyan, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Commun. Partial Differ. Equ., 36, 11, 2011-2047 (2011) · Zbl 1230.35030
[3] Bartsch, Thomas; de Valeriola, Sébastien, Normalized solutions of nonlinear Schrödinger equations, Arch. Math. (Basel), 100, 1, 75-83 (2013) · Zbl 1260.35098
[4] Bartsch, Thomas; Jeanjean, Louis; Soave, Nicola, Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^3\), J. Math. Pures Appl. (9), 106, 4, 583-614 (2016) · Zbl 1347.35107
[5] Bartsch, Thomas; Molle, Riccardo; Rizzi, Matteo; Verzini, Gianmaria, Normalized solutions of mass supercritical Schrödinger equations with potential, Commun. Partial Differ. Equ., 46, 9, 1729-1756 (2021) · Zbl 1496.35183
[6] Bartsch, Thomas; Soave, Nicola, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var. Partial Differ. Equ., 58, 1, Article 22 pp. (2019), 24 · Zbl 1409.35076
[7] Bartsch, Thomas; Zhong, Xuexiu; Zou, Wenming, Normalized solutions for a coupled Schrödinger system, Math. Ann., 380, 3-4, 1713-1740 (2021) · Zbl 1479.35762
[8] Bellazzini, Jacopo; Jeanjean, Louis, On dipolar quantum gases in the unstable regime, SIAM J. Math. Anal., 48, 3, 2028-2058 (2016) · Zbl 1352.35157
[9] Bellazzini, Jacopo; Jeanjean, Louis; Luo, Tingjian, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc. (3), 107, 2, 303-339 (2013) · Zbl 1284.35391
[10] Bellazzini, Jacopo; Siciliano, Gaetano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261, 9, 2486-2507 (2011) · Zbl 1357.49053
[11] Bellazzini, Jacopo; Siciliano, Gaetano, Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62, 2, 267-280 (2011) · Zbl 1339.35280
[12] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., 82, 4, 313-345 (1983) · Zbl 0533.35029
[13] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82, 4, 347-375 (1983) · Zbl 0556.35046
[14] Bartosz, Bieganowski; Mederski, Jarosław, Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth, J. Funct. Anal., 280, 11, Article 108989 pp. (2021) · Zbl 1465.35151
[15] Brezis, Haim, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext (2011), Springer: Springer New York · Zbl 1220.46002
[16] Brézis, Haïm; Lieb, Elliott, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 3, 486-490 (1983) · Zbl 0526.46037
[17] Brézis, Haïm; Nirenberg, Louis, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36, 4, 437-477 (1983) · Zbl 0541.35029
[18] Catto, I.; Dolbeault, J.; Sánchez, O.; Soler, J., Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle, Math. Models Methods Appl. Sci., 23, 10, 1915-1938 (2013) · Zbl 1283.35117
[19] Cazenave, Thierry, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10 (2003), New York University, Courant Institute of Mathematical Sciences/American Mathematical Society: New York University, Courant Institute of Mathematical Sciences/American Mathematical Society New York/Providence, RI · Zbl 1055.35003
[20] Cazenave, Thierry; Lions, Pierre-Louis, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85, 4, 549-561 (1982) · Zbl 0513.35007
[21] Cingolani, Silvia; Jeanjean, Louis, Stationary waves with prescribed \(L^2\)-norm for the planar Schrödinger-Poisson system, SIAM J. Math. Anal., 51, 4, 3533-3568 (2019) · Zbl 1479.35331
[22] D’Aprile, Teresa; Mugnai, Dimitri, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4, 3, 307-322 (2004) · Zbl 1142.35406
[23] Nassif, Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, vol. 107 (1993), Cambridge University Press: Cambridge University Press Cambridge, With appendices by David Robinson · Zbl 0790.58002
[24] Gou, Tianxiang; Jeanjean, Louis, Existence and orbital stability of standing waves for nonlinear Schrödinger systems, Nonlinear Anal., 144, 10-22 (2016) · Zbl 1457.35068
[25] Gou, Tianxiang; Zhang, Zhitao, Normalized solutions to the Chern-Simons-Schrödinger system, J. Funct. Anal., 280, 5, Article 108894 pp. (2021), 65 · Zbl 1455.35080
[26] Ikoma, Norihisa, Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions, Adv. Nonlinear Stud., 14, 1, 115-136 (2014) · Zbl 1297.35218
[27] Jeanjean, Louis, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28, 10, 1633-1659 (1997) · Zbl 0877.35091
[28] Jeanjean, Louis; Jendrej, Jacek; Le, Thanh Trung; Visciglia, Nicola, Orbital stability of ground states for a Sobolev critical Schrödinger equation (2020)
[29] Jeanjean, Louis; Le, Thanh Trung, Multiple normalized solutions for a sobolev critical Schrödinger equation, Math. Ann. (2021) · Zbl 1475.35163
[30] Jeanjean, Louis; Lu, Sheng-Sen, A mass supercritical problem revisited, Calc. Var. Partial Differ. Equ., 59, 5, 174 (2020), 43 · Zbl 1453.35087
[31] Jeanjean, Louis; Luo, Tingjian, Sharp nonexistence results of prescribed \(L^2\)-norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys., 64, 4, 937-954 (2013) · Zbl 1294.35140
[32] Kato, Tosio, Growth properties of solutions of the reduced wave equation with a variable coefficient, Commun. Pure Appl. Math., 12, 403-425 (1959) · Zbl 0091.09502
[33] Kikuchi, Hiroaki, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7, 3, 403-437 (2007) · Zbl 1133.35013
[34] Li, Xinfu; Ma, Shiwang, Choquard equations with critical nonlinearities, Commun. Contemp. Math., 22, 4, Article 1950023 pp. (2020), 28 · Zbl 1440.35139
[35] Lieb, Elliott H.; Loss, Michael, Analysis, Graduate Studies in Mathematics, vol. 14 (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0966.26002
[36] Lions, Pierre-Louis, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, 2, 109-145 (1984) · Zbl 0541.49009
[37] Lions, Pierre-Louis, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, 4, 223-283 (1984) · Zbl 0704.49004
[38] Luo, Xiao; Yang, Tao; Yang, Xiaolong, Multiplicity and asymptotics of standing waves for the energy critical half-wave (2021)
[39] Moroz, Vitaly; Van Schaftingen, Jean, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19, 1, 773-813 (2017) · Zbl 1360.35252
[40] Nirenberg, Louis, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 3, 13, 115-162 (1959) · Zbl 0088.07601
[41] Noris, Benedetta; Tavares, Hugo; Verzini, Gianmaria, Normalized solutions for nonlinear Schrödinger systems on bounded domains, Nonlinearity, 32, 3, 1044-1072 (2019) · Zbl 1410.35211
[42] Pellacci, Benedetta; Pistoia, Angela; Vaira, Giusi; Verzini, Gianmaria, Normalized concentrating solutions to nonlinear elliptic problems, J. Differ. Equ., 275, 882-919 (2021) · Zbl 1455.35119
[43] Pierotti, Dario; Verzini, Gianmaria, Normalized bound states for the nonlinear Schrödinger equation in bounded domains, Calc. Var. Partial Differ. Equ., 56, 5, 133 (2017), 27 · Zbl 1420.35374
[44] Ruiz, David, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237, 2, 655-674 (2006) · Zbl 1136.35037
[45] Sánchez, Óscar; Soler, Juan, Long-time dynamics of the Schrödinger-Poisson-Slater system, J. Stat. Phys., 114, 1-2, 179-204 (2004) · Zbl 1060.82039
[46] Simon, Barry, Tosio Kato’s work on non-relativistic quantum mechanics, Part 2, Bull. Math. Sci., 9, 1, Article 1950005 pp. (2019), 105 · Zbl 1472.81094
[47] Soave, Nicola, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equ., 269, 9, 6941-6987 (2020) · Zbl 1440.35312
[48] Soave, Nicola, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279, 6, Article 108610 pp. (2020), 43 · Zbl 1440.35311
[49] Strauss, Walter A., Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55, 2, 149-162 (1977) · Zbl 0356.35028
[50] Tarantello, G., On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 9, 3, 281-304 (1992) · Zbl 0785.35046
[51] Troianiello, Giovanni Maria, Elliptic Differential Equations and Obstacle Problems, The University Series in Mathematics (1987), Plenum Press: Plenum Press New York · Zbl 0655.35002
[52] Wei, Juncheng; Wu, Yuanze, Normalized solutions for Schrödinger equations with critical sobolev exponent and mixed nonlinearities (2021) · Zbl 1467.82106
[53] Yao, Shuai; Sun, Juntao; Wu, Tsung-fang, Normalized solutions for the Schrödinger equation with combined hartree type and power nonlinearities (2021)
[54] Zhao, Leiga; Zhao, Fukun, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346, 1, 155-169 (2008) · Zbl 1159.35017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.