×

Analysis of a regular black hole in Verlinde’s gravity. (English) Zbl 1533.83019

Summary: This work focuses on the examination of a regular black hole within Verlinde’s emergent gravity, specifically investigating the Hayward-like (modified) solution. The study reveals the existence of three horizons under certain conditions, i.e. an event horizon and two Cauchy horizons. Our results indicate regions which phase transitions occur based on the analysis of heat capacity and Hawking temperature. To compute the latter quantity, we utilize three distinct methods: the surface gravity approach, Hawking radiation, and the application of the first law of thermodynamics. In the case of the latter approach, it is imperative to introduce a correction to ensure the preservation of the Bekenstein-Hawking area law. Geodesic trajectories and critical orbits (photon spheres) are calculated, highlighting the presence of three light rings. Additionally, we investigate the black hole shadows. Furthermore, the quasinormal modes are explored using third- and sixth-order Wentzel-Kramers-Brillouin approximations. In particular, we observe stable and unstable oscillations for certain frequencies. Finally, in order to comprehend the phenomena of time-dependent scattering in this scenario, we provide an investigation of the time-domain solution.
{© 2023 IOP Publishing Ltd}

MSC:

83C45 Quantization of the gravitational field
83C57 Black holes

References:

[1] Stelle, K., Classical gravity with higher derivatives, Gen. Relativ. Gravit., 9, 353-71 (1978) · doi:10.1007/BF00760427
[2] Biswas, T.; Mazumdar, A.; Siegel, W., Bouncing universes in string-inspired gravity, J. Cosmol. Astropart. Phys., JCAP03(2006)009 (2006) · Zbl 1236.83020 · doi:10.1088/1475-7516/2006/03/009
[3] Barnaby, N.; Kamran, N., Dynamics with infinitely many derivatives: the initial value problem, J. High Energy Phys., JHEP02(2008)008 (2008) · doi:10.1088/1126-6708/2008/02/008
[4] Tomboulis, E., Superrenormalizable gauge and gravitational theories (1997)
[5] Biswas, T.; Gerwick, E.; Koivisto, T.; Mazumdar, A., Towards singularity-and ghost-free theories of gravity, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.031101
[6] Biswas, T.; Conroy, A.; Koshelev, A. S.; Mazumdar, A., Generalized ghost-free quadratic curvature gravity, Class. Quantum Grav., 31 (2013) · Zbl 1287.83036 · doi:10.1088/0264-9381/31/1/015022
[7] Modesto, L., Super-renormalizable quantum gravity, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.044005
[8] Modesto, L.; Rachwał, L., Super-renormalizable and finite gravitational theories, Nucl. Phys. B, 889, 228-48 (2014) · Zbl 1326.83061 · doi:10.1016/j.nuclphysb.2014.10.015
[9] Biswas, T.; Koivisto, T.; Mazumdar, A., Nonlocal theories of gravity: the flat space propagator (2013)
[10] Talaganis, S.; Biswas, T.; Mazumdar, A., Towards understanding the ultraviolet behavior of quantum loops in infinite-derivative theories of gravity, Class. Quantum Grav., 32 (2015) · Zbl 1329.83168 · doi:10.1088/0264-9381/32/21/215017
[11] Tomboulis, E., Nonlocal and quasilocal field theories, Phys. Rev. D, 92 (2015) · Zbl 1308.83067 · doi:10.1103/PhysRevD.92.125037
[12] Tomboulis, E., Renormalization and unitarity in higher derivative and nonlocal gravity theories, Mod. Phys. Lett. A, 30 (2015) · Zbl 1308.83067 · doi:10.1142/S0217732315400052
[13] Nicolini, P.; Smailagic, A.; Spallucci, E., Noncommutative geometry inspired Schwarzschild black hole, Phys. Lett. B, 632, 547-51 (2006) · Zbl 1247.83113 · doi:10.1016/j.physletb.2005.11.004
[14] Spallucci, E.; Smailagic, A.; Nicolini, P., Trace anomaly on a quantum spacetime manifold, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.73.084004
[15] Nicolini, P., A model of radiating black hole in noncommutative geometry, J. Phys. A: Math. Gen., 38, L631 (2005) · Zbl 1081.83020 · doi:10.1088/0305-4470/38/39/L02
[16] Biswas, T.; Koivisto, T.; Mazumdar, A., Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity, J. Cosmol. Astropart. Phys., JCAP11(2010)008 (2010) · doi:10.1088/1475-7516/2010/11/008
[17] Modesto, L.; Moffat, J. W.; Nicolini, P., Black holes in an ultraviolet complete quantum gravity, Phys. Lett. B, 695, 397-400 (2011) · doi:10.1016/j.physletb.2010.11.046
[18] Hossenfelder, S.; Modesto, L.; Prémont-Schwarz, I., Model for nonsingular black hole collapse and evaporation, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.044036
[19] Calcagni, G.; Modesto, L.; Nicolini, P., Super-accelerating bouncing cosmology in asymptotically free non-local gravity, Eur. Phys. J. C, 74, 1-13 (2014) · doi:10.1140/epjc/s10052-014-2999-8
[20] Zhang, Y.; Zhu, Y.; Modesto, L.; Bambi, C., Can static regular black holes form from gravitational collapse?, Eur. Phys. J. C, 75, 1-13 (2015) · doi:10.1140/epjc/s10052-015-3311-2
[21] Conroy, A.; Mazumdar, A.; Teimouri, A., Wald entropy for ghost-free, infinite derivative theories of gravity, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.201101
[22] Li, Y-D; Modesto, L.; Rachwał, L., Exact solutions and spacetime singularities in nonlocal gravity, J. High Energy Phys., JHEP12(2015)173 (2015) · Zbl 1388.83034 · doi:10.1007/JHEP12(2015)173
[23] Bambi, C.; Malafarina, D.; Modesto, L., Black supernovae and black holes in non-local gravity, J. High Energy Phys., JHEP04(2016)147 (2016) · Zbl 1388.83376 · doi:10.1007/JHEP04(2016)147
[24] Bardeen, J. M., Non-singular general-relativistic gravitational collapse, p 174 (1968)
[25] Dymnikova, I., Vacuum nonsingular black hole, Gen. Relativ. Gravit., 24, 235-42 (1992) · doi:10.1007/BF00760226
[26] Borde, A., Regular black holes and topology change, Phys. Rev. D, 55, 7615 (1997) · doi:10.1103/PhysRevD.55.7615
[27] Ayon-Beato, E.; Garcia, A., Regular black hole in general relativity coupled to nonlinear electrodynamics, Phys. Rev. Lett., 80, 5056 (1998) · doi:10.1103/PhysRevLett.80.5056
[28] Lemos, J. P.; Zanchin, V. T., Regular black holes: electrically charged solutions, Reissner-Nordström outside a de Sitter core, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.124005
[29] Uchikata, N.; Yoshida, S.; Futamase, T., New solutions of charged regular black holes and their stability, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.084025
[30] Flachi, A.; Lemos, J. P., Quasinormal modes of regular black holes, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.024034
[31] De Lorenzo, T.; Pacilio, C.; Rovelli, C.; Speziale, S., On the effective metric of a Planck star, Gen. Relativ. Gravit., 47, 1-16 (2015) · Zbl 1317.83034 · doi:10.1007/s10714-015-1882-8
[32] Balart, L.; Vagenas, E. C., Regular black holes with a nonlinear electrodynamics source, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.124045
[33] Ghosh, S. G.; Maharaj, S. D., Radiating Kerr-like regular black hole, Eur. Phys. J. C, 75, 1-9 (2015) · doi:10.1140/epjc/s10052-014-3222-7
[34] Lorenzo, T. D.; Giusti, A.; Speziale, S., Non-singular rotating black hole with a time delay in the center, Gen. Relativ. Gravit., 48, 1-22 (2016) · Zbl 1337.83034 · doi:10.1007/s10714-016-2026-5
[35] Haggard, H. M.; Rovelli, C., Quantum-gravity effects outside the horizon spark black to white hole tunneling, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.104020
[36] Kawai, H.; Yokokura, Y., Interior of black holes and information recovery, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.044011
[37] Lemos, J. P.; Zanchin, V. T., Regular black holes: Guilfoyle’s electrically charged solutions with a perfect fluid phantom core, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.124012
[38] Frolov, V. P., Notes on nonsingular models of black holes, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.104056
[39] Neves, J. C.; Saa, A., Regular rotating black holes and the weak energy condition, Phys. Lett. B, 734, 44-48 (2014) · Zbl 1380.83157 · doi:10.1016/j.physletb.2014.05.026
[40] Maluf, R.; Neves, J. C., Thermodynamics of a class of regular black holes with a generalized uncertainty principle, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.104015
[41] Neves, J., Deforming regular black holes, Int. J. Mod. Phys. A, 32 (2017) · Zbl 1371.83108 · doi:10.1142/S0217751X17501123
[42] Neves, J. C., Bouncing cosmology inspired by regular black holes, Gen. Relativ. Gravit., 49, 1-12 (2017) · Zbl 1380.83315 · doi:10.1007/s10714-017-2288-6
[43] Neves, J. C.; Saa, A., Accretion of perfect fluids onto a class of regular black holes, Ann. Phys., NY, 420 (2020) · Zbl 1451.83045 · doi:10.1016/j.aop.2020.168269
[44] Maluf, R.; Neves, J. C., Bardeen regular black hole as a quantum-corrected Schwarzschild black hole, Int. J. Mod. Phys. D, 28 (2019) · doi:10.1142/S0218271819500482
[45] Ansoldi, S., Spherical black holes with regular center: a review of existing models including a recent realization with gaussian sources (2008)
[46] Unno, W.; Osaki, Y.; Ando, H.; Shibahashi, H., Nonradial Oscillations of Stars (1979), University of Tokyo Press
[47] Kjeldsen, H.; Bedding, T. R., Amplitudes of stellar oscillations: the implications for asteroseismology (1994)
[48] Dziembowski, W.; Goode, P. R., Effects of differential rotation on stellar oscillations—a second-order theory, Astrophys. J., 394, 670-87 (1992) · doi:10.1086/171621
[49] Pretorius, F., Evolution of binary black-hole spacetimes, Phys. Rev. Lett., 95 (2005) · doi:10.1103/PhysRevLett.95.121101
[50] Hurley, J. R.; Tout, C. A.; Pols, O. R., Evolution of binary stars and the effect of tides on binary populations, Mon. Not. R. Astron. Soc., 329, 897-928 (2002) · doi:10.1046/j.1365-8711.2002.05038.x
[51] Yakut, K.; Eggleton, P. P., Evolution of close binary systems, Astrophys. J., 629, 1055 (2005) · doi:10.1086/431300
[52] Heuvel, E. V D., Compact stars and the evolution of binary systems, Fluid Flows To Black Holes: A Tribute to S Chandrasekhar on His Birth Centenary, pp 55-73 (2011), World Scientific
[53] Riles, K., Recent searches for continuous gravitational waves, Mod. Phys. Lett. A, 32 (2017) · doi:10.1142/S021773231730035X
[54] Konoplya, R.; Zhidenko, A., Quasinormal modes of black holes: from astrophysics to string theory, Rev. Mod. Phys., 83, 793 (2011) · doi:10.1103/RevModPhys.83.793
[55] Heidari, N.; Hassanabadi, H.; Araújo Filho, A. A.; Kuríuz, J.; Zare, S.; Porfírio, P. J., Gravitational signatures of a non-commutative stable black hole (2023)
[56] Kokkotas, K. D.; Schmidt, B. G., Quasi-normal modes of stars and black holes, Living Rev. Relativ., 2, 1-72 (1999) · Zbl 0984.83002 · doi:10.12942/lrr-1999-2
[57] Rincón, A.; Santos, V., Greybody factor and quasinormal modes of regular black holes, Eur. Phys. J. C, 80, 1-7 (2020) · doi:10.1140/epjc/s10052-020-08445-2
[58] Santos, V.; Maluf, R.; Almeida, C., Quasinormal frequencies of self-dual black holes, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.084047
[59] Oliveira, R.; Dantas, D.; Santos, V.; Almeida, C., Quasinormal modes of bumblebee wormhole, Class. Quantum Grav., 36 (2019) · Zbl 1475.83025 · doi:10.1088/1361-6382/ab1873
[60] Berti, E.; Cardoso, V.; Starinets, A. O., Quasinormal modes of black holes and black branes, Class. Quantum Grav., 26 (2009) · Zbl 1173.83001 · doi:10.1088/0264-9381/26/16/163001
[61] Horowitz, G. T.; Hubeny, V. E., Quasinormal modes of ads black holes and the approach to thermal equilibrium, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.024027
[62] Nollert, H-P, Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars, Class. Quantum Grav., 16, R159 (1999) · Zbl 0948.83032 · doi:10.1088/0264-9381/16/12/201
[63] Ferrari, V.; Mashhoon, B., New approach to the quasinormal modes of a black hole, Phys. Rev. D, 30, 295 (1984) · doi:10.1103/PhysRevD.30.295
[64] London, L.; Shoemaker, D.; Healy, J., Modeling ringdown: beyond the fundamental quasinormal modes, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.124032
[65] Maggiore, M., Physical interpretation of the spectrum of black hole quasinormal modes, Phys. Rev. Lett., 100 (2008) · Zbl 1228.83073 · doi:10.1103/PhysRevLett.100.141301
[66] Övgün, A.; Sakallı, I.; Saavedra, J., Quasinormal modes of a Schwarzschild black hole immersed in an electromagnetic Universe, Chin. Phys. C, 42 (2018) · doi:10.1088/1674-1137/42/10/105102
[67] Blázquez-Salcedo, J. L.; Chew, X. Y.; Kunz, J., Scalar and axial quasinormal modes of massive static phantom wormholes, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.044035
[68] Roy, P. D.; Aneesh, S.; Kar, S., Revisiting a family of wormholes: geometry, matter, scalar quasinormal modes and echoes, Eur. Phys. J. C, 80, 1-17 (2020) · doi:10.1140/epjc/s10052-020-8409-5
[69] Kim, J. Y.; Lee, C. O.; Park, M-I, Quasi-normal modes of a natural AdS wormhole in Einstein-Born-Infeld gravity, Eur. Phys. J. C, 78, 1-15 (2018) · doi:10.1140/epjc/s10052-018-6478-5
[70] Lee, C. O.; Kim, J. Y.; Park, M-I, Quasi-normal modes and stability of Einstein-Born-Infeld black holes in de sitter space, Eur. Phys. J. C, 80, 1-21 (2020) · doi:10.1140/epjc/s10052-020-8309-8
[71] Jawad, AChaudhary, SYasir, MÖvgün, ASakallı, İ2020Quasinormal modes of extended gravity black holes
[72] Maluf, R.; Santos, V.; Cruz, W.; Almeida, C., Matter-gravity scattering in the presence of spontaneous Lorentz violation, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.025005
[73] Maluf, R.; Almeida, C.; Casana, R.; Ferreira, M. Jr, Einstein-Hilbert graviton modes modified by the Lorentz-violating bumblebee field, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.025007
[74] Okyay, M.; Övgün, A., Nonlinear electrodynamics effects on the black hole shadow, deflection angle, quasinormal modes and greybody factors, J. Cosmol. Astropart. Phys., JCAP01(2022)009 (2022) · Zbl 1486.83116 · doi:10.1088/1475-7516/2022/01/009
[75] Zhao, Y.; Ren, X.; Ilyas, A.; Saridakis, E. N.; Cai, Y-F, Quasinormal modes of black holes in f(t) gravity, J. Cosmol. Astropart. Phys., JCAP10(2022)087 (2022) · Zbl 1515.83180 · doi:10.1088/1475-7516/2022/10/087
[76] Boudet, S.; Bombacigno, F.; Olmo, G. J.; Porfirio, P. J., Quasinormal modes of Schwarzschild black holes in projective invariant Chern-Simons modified gravity, J. Cosmol. Astropart. Phys., JCAP05(2022)032 (2022) · Zbl 1507.83049 · doi:10.1088/1475-7516/2022/05/032
[77] Cadoni, M.; Oi, M.; Sanna, A. P., Quasi-normal modes and microscopic description of 2D black holes, J. High Energy Phys., JHEP01(2022)087 (2022) · Zbl 1521.83094 · doi:10.1007/JHEP01(2022)087
[78] Hui, L.; Kabat, D.; Wong, S. S., Quasinormal modes, echoes and the causal structure of the Green’s function, J. Cosmol. Astropart. Phys., JCAP12(2019)020 (2019) · Zbl 1542.83012 · doi:10.1088/1475-7516/2019/12/020
[79] Abbott, B., Directly comparing GW150914 with numerical solutions of Einstein’s equations for binary black hole coalescence, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.064035
[80] Abbott, B. P., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. Lett., 848, L13 (2017) · doi:10.3847/2041-8213/aa920c
[81] Abbott, B. P., GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.161101
[82] Abbott, B Pet al.2017Multi-messenger observations of a binary neutron star merger
[83] Fafone, V., Advanced Virgo: an update, pp 2025-8 (2015), World Scientific
[84] Abramovici, A., LIGO: the laser interferometer gravitational-wave observatory, Science, 256, 325-33 (1992) · doi:10.1126/science.256.5055.325
[85] Coccia, E.; Pizzella, G.; Ronga, F., Gravitational wave experiments, vol 1 (1995), World Scientific
[86] Lück, H., The GEO600 project, Class. Quantum Grav., 14, 1471 (1997) · doi:10.1088/0264-9381/14/6/012
[87] Evans, M., Gravitational wave detection with advanced ground based detectors, Gen. Relativ. Gravit., 46, 1778 (2014) · doi:10.1007/s10714-014-1778-z
[88] Thorne, K. S., Probing black holes and relativistic stars with gravitational waves, Black Holes and the Structure of the Universe, pp 81-118 (2000), World Scientific · Zbl 0970.83023
[89] Regge, T.; Wheeler, J. A., Stability of a Schwarzschild singularity, Phys. Rev., 108, 1063 (1957) · Zbl 0079.41902 · doi:10.1103/PhysRev.108.1063
[90] Zerilli, F. J., Effective potential for even-parity Regge-Wheeler gravitational perturbation equations, Phys. Rev. Lett., 24, 737 (1970) · doi:10.1103/PhysRevLett.24.737
[91] Zerilli, F. J., Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordström geometry, Phys. Rev. D, 9, 860 (1974) · doi:10.1103/PhysRevD.9.860
[92] Herdeiro, C. A.; Radu, E., Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys. D, 24 (2015) · Zbl 1339.83008 · doi:10.1142/S0218271815420146
[93] Ayón-Beato, E.; Canfora, F.; Zanelli, J., Analytic self-gravitating skyrmions, cosmological bounces and AdS wormholes, Phys. Lett. B, 752, 201-5 (2016) · doi:10.1016/j.physletb.2015.11.065
[94] Colpi, M.; Shapiro, S. L.; Wasserman, I., Boson stars: gravitational equilibria of self-interacting scalar fields, Phys. Rev. Lett., 57, 2485 (1986) · doi:10.1103/PhysRevLett.57.2485
[95] Palenzuela, C.; Pani, P.; Bezares, M.; Cardoso, V.; Lehner, L.; Liebling, S., Gravitational wave signatures of highly compact boson star binaries, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.104058
[96] Cunha, P. V.; Font, J. A.; Herdeiro, C.; Radu, E.; Sanchis-Gual, N.; Zilhao, M., Lensing and dynamics of ultracompact bosonic stars, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.104040
[97] Visser, M.; Wiltshire, D. L., Stable gravastars—an alternative to black holes?, Class. Quantum Grav., 21, 1135 (2004) · Zbl 1052.83027 · doi:10.1088/0264-9381/21/4/027
[98] Pani, P.; Berti, E.; Cardoso, V.; Chen, Y.; Norte, R., Gravitational wave signatures of the absence of an event horizon: nonradial oscillations of a thin-shell gravastar, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.124047
[99] Chirenti, C.; Rezzolla, L., Did GW150914 produce a rotating gravastar?, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.084016
[100] Cardoso, V.; Dias, O. J.; Lemos, J. P.; Yoshida, S., Black-hole bomb and superradiant instabilities, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.044039
[101] Sanchis-Gual, N.; Degollado, J. C.; Montero, P. J.; Font, J. A.; Herdeiro, C., Explosion and final state of an unstable Reissner-Nordström black hole, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.141101
[102] Hod, S., The charged black-hole bomb: a lower bound on the charge-to-mass ratio of the explosive scalar field, Phys. Lett. B, 755, 177-82 (2016) · Zbl 1367.83051 · doi:10.1016/j.physletb.2016.02.009
[103] Brito, R.; Cardoso, V.; Pani, P., Black holes as particle detectors: evolution of superradiant instabilities, Class. Quantum Grav., 32 (2015) · Zbl 1327.83140 · doi:10.1088/0264-9381/32/13/134001
[104] Verlinde, E., On the origin of gravity and the laws of Newton, J. High Energy Phys., JHEP04(2011)029 (2011) · Zbl 1260.81284 · doi:10.1007/JHEP04(2011)029
[105] Verlinde, E. P., Emergent gravity and the dark universe, SciPost Phys., 2, 016 (2017) · doi:10.21468/SciPostPhys.2.3.016
[106] Bekenstein, J. D., Black holes and entropy, Phys. Rev. D, 7, 2333 (1973) · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[107] Bekenstein, J. D., Generalized second law of thermodynamics in black-hole physics, Phys. Rev. D, 9, 3292 (1974) · doi:10.1103/PhysRevD.9.3292
[108] Bekenstein, J. D., Black holes and the second law, Jacob Bekenstein: The Conservative Revolutionary, pp 303-6 (2020), World Scientific
[109] Bardeen, J. M.; Carter, B.; Hawking, S. W., The four laws of black hole mechanics, Commun. Math. Phys., 31, 161-70 (1973) · Zbl 1125.83309 · doi:10.1007/BF01645742
[110] Jacobson, T., Thermodynamics of spacetime: the Einstein equation of state, Phys. Rev. Lett., 75, 1260 (1995) · Zbl 1020.83609 · doi:10.1103/PhysRevLett.75.1260
[111] Padmanabhan, T., Thermodynamical aspects of gravity: new insights, Rep. Prog. Phys., 73 (2010) · doi:10.1088/0034-4885/73/4/046901
[112] Mäkelä, J., Notes concerning “On the origin of gravity and the laws of newton” by E. Verlinde (2010)
[113] Hooft, G., Quantum gravity as a dissipative deterministic system, Class. Quantum Grav., 16, 3263 (1999) · Zbl 0937.83015 · doi:10.1088/0264-9381/16/10/316
[114] Hooft, G., The holographic principle, Basics and Highlights in Fundamental Physics, pp 72-100 (2001), World Scientific
[115] Verlinde, E., The hidden phase space of our universe (2011), University of Amsterdam
[116] Shu, F-W; Gong, Y., Equipartition of energy and the first law of thermodynamics at the apparent horizon, Int. J. Mod. Phys. D, 20, 553-9 (2011) · Zbl 1217.83062 · doi:10.1142/S0218271811018883
[117] Cai, R-G; Cao, L-M; Ohta, N., Friedmann equations from entropic force, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.061501
[118] Easson, D. A.; Frampton, P. H.; Smoot, G. F., Entropic accelerating universe, Phys. Lett. B, 696, 273-7 (2011) · doi:10.1016/j.physletb.2010.12.025
[119] Cai, Y-F; Liu, J.; Li, H., Entropic cosmology: a unified model of inflation and late-time acceleration, Phys. Lett. B, 690, 213-9 (2010) · doi:10.1016/j.physletb.2010.05.033
[120] Wang, Y., Towards a holographic description of inflation and generation of fluctuations from thermodynamics (2010)
[121] Smolin, L., Newtonian gravity in loop quantum gravity (2010)
[122] Lee, J-W; Kim, H-C; Lee, J., Gravity from quantum information, J. Korean Phys. Soc., 63, 1094-8 (2013) · doi:10.3938/jkps.63.1094
[123] Wang, Z-W; Braunstein, S. L., Surfaces away from horizons are not thermodynamic, Nat. Commun., 9, 2977 (2018) · doi:10.1038/s41467-018-05433-9
[124] Liu, L-H; Prokopec, T., Gravitational microlensing in Verlinde’s emergent gravity, Phys. Lett. B, 769, 281-8 (2017) · Zbl 1370.83082 · doi:10.1016/j.physletb.2017.03.061
[125] Buchel, A., Verlinde gravity and AdS/CFT (2017)
[126] Pardo, K., Testing emergent gravity with isolated dwarf galaxies, J. Cosmol. Astropart. Phys., JCAP12(2020)012 (2020) · Zbl 1484.85002 · doi:10.1088/1475-7516/2020/12/012
[127] Tamosiunas, A.; Bacon, D.; Koyama, K.; Nichol, R. C., Testing emergent gravity on galaxy cluster scales, J. Cosmol. Astropart. Phys., 2019, 053 (2019) · doi:10.1088/1475-7516/2019/05/053
[128] Brouwer, M. M., The weak lensing radial acceleration relation: constraining modified gravity and cold dark matter theories with KiDS-1000, Astron. Astrophys., 650, A113 (2021) · doi:10.1051/0004-6361/202040108
[129] Jusufi, K., Regular black holes in Verlinde’s emergent gravity, Ann. Phys., NY, 448 (2023) · Zbl 1517.83043 · doi:10.1016/j.aop.2022.169191
[130] Hayward, S. A., Formation and evaporation of nonsingular black holes, Phys. Rev. Lett., 96 (2006) · doi:10.1103/PhysRevLett.96.031103
[131] Ma, M-S; Zhao, R., Corrected form of the first law of thermodynamics for regular black holes, Class. Quantum Grav., 31 (2014) · Zbl 1307.83035 · doi:10.1088/0264-9381/31/24/245014
[132] Hawking, S. W., Particle creation by black holes, Euclidean Quantum Gravity, pp 167-88 (1975), World Scientific · Zbl 1378.83040
[133] Angheben, M.; Nadalini, M.; Vanzo, L.; Zerbini, S., Hawking radiation as tunneling for extremal and rotating black holes, J. High Energy Phys., JHEP05(2005)014 (2005) · doi:10.1088/1126-6708/2005/05/014
[134] Kerner, R.; Mann, R. B., Tunnelling, temperature and Taub-NUT black holes, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.73.104010
[135] Kerner, R.; Mann, R. B., Fermions tunnelling from black holes, Class. Quantum Grav., 25 (2008) · Zbl 1140.83377 · doi:10.1088/0264-9381/25/9/095014
[136] Araújo Filho, A. A.; Petrov, A. Y., Bouncing universe in a heat bath, Int. J. Mod. Phys. A, 36 (2021) · doi:10.1142/S0217751X21502420
[137] Campos, J.; Anacleto, M.; Brito, F.; Passos, E., Quasinormal modes and shadow of noncommutative black hole, Sci. Rep., 12, 8516 (2022) · doi:10.1038/s41598-022-12343-w
[138] Araújo Filho, A. A., Thermal Aspects of Field Theories (2022), Amazon.com
[139] Araújo Filho, A. A.; Zare, S.; Porfírio, P.; Kříž, J.; Hassanabadi, H., Thermodynamics and evaporation of a modified Schwarzschild black hole in a non-commutative gauge theory, Phys. Lett. B, 838 (2023) · Zbl 1519.83049 · doi:10.1016/j.physletb.2023.137744
[140] Araújo Filho, A. A.; Reis, J., Thermal aspects of interacting quantum gases in Lorentz-violating scenarios, Eur. Phys. J. Plus, 136, 1-30 (2021) · doi:10.1140/epjp/s13360-021-01289-z
[141] Anacleto, M.; Brito, F.; Cruz, S.; Passos, E., Noncommutative correction to the entropy of Schwarzschild black hole with GUP, Int. J. Mod. Phys. A, 36 (2021) · Zbl 1457.83025 · doi:10.1142/S0217751X21500287
[142] Araújo Filho, A. A., Lorentz-violating scenarios in a thermal reservoir, Eur. Phys. J. Plus, 136, 1-14 (2021) · doi:10.1140/epjp/s13360-021-01434-8
[143] Araújo Filho, A. A.; Maluf, R. V., Thermodynamic properties in higher-derivative electrodynamics, Braz. J. Phys., 51, 820-30 (2021) · doi:10.1007/s13538-021-00880-0
[144] Araújo Filho, A. A.; Petrov, A. Y., Higher-derivative Lorentz-breaking dispersion relations: a thermal description, Eur. Phys. J. C, 81, 843 (2021) · doi:10.1140/epjc/s10052-021-09639-y
[145] Araújo Filho, A. A., Particles in loop quantum gravity formalism: a thermodynamical description, Ann. Phys., Lpz., 534 (2022) · Zbl 07770800 · doi:10.1002/andp.202200383
[146] Sedaghatnia, P.; Hassanabadi, H.; Araújo Filho, A. A.; Porfírio, J.; Chung, W., Thermodynamical properties of a deformed Schwarzschild black hole via Dunkl generalization (2023)
[147] Araújo Filho, A. A.; Furtado, J.; Silva, J., Thermodynamical properties of an ideal gas in a traversable wormhole (2023)
[148] Araújo Filho, A. A.; Furtado, J.; Hassanabadi, H.; Reis, J., Thermal analysis of photon-like particles in rainbow gravity (2023)
[149] Araújo Filho, A. A., Thermodynamics of massless particles in curved spacetime (2022)
[150] Araújo Filho, A. A.; Reis, J.; Ghosh, S., Fermions on a torus knot, Eur. Phys. J. Plus, 137, 614 (2022) · doi:10.1140/epjp/s13360-022-02828-y
[151] Anacleto, M.; Brito, F.; Maciel, E.; Mohammadi, A.; Passos, E.; Santos, W.; Santos, J., Lorentz-violating dimension-five operator contribution to the black body radiation, Phys. Lett. B, 785, 191-6 (2018) · doi:10.1016/j.physletb.2018.08.043
[152] Araújo Filho, A. A.; Reis, J., How does geometry affect quantum gases?, Int. J. Mod. Phys. A, 37 (2022) · doi:10.1142/S0217751X22500713
[153] Aguirre, A.; Flores-Hidalgo, G.; Rana, R.; Souza, E., The Lorentz-violating real scalar field at thermal equilibrium, Eur. Phys. J. C, 81, 459 (2021) · doi:10.1140/epjc/s10052-021-09250-1
[154] Oliveira, R. R.; Araújo Filho, A. A.; Lima, F. C.; Maluf, R. V.; Almeida, C. A., Thermodynamic properties of an Aharonov-Bohm quantum ring, Eur. Phys. J. Plus, 134, 495 (2019) · doi:10.1140/epjp/i2019-12880-x
[155] Araújo Filho, A. A.; Hassanabadi, H.; Reis, J. A A. S.; Santos, L. L., Thermodynamics of a quantum ring modified by Lorentz violation, Phys. Scr., 98 (2022) · doi:10.1088/1402-4896/acd30d
[156] Lim, Y-K; Wang, Q-H, Field equations and particle motion in covariant emergent gravity, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.124029
[157] Guerrero, M.; Olmo, G. J.; Rubiera-Garcia, D.; Gómez, D. S-C, Multiring images of thin accretion disk of a regular naked compact object, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.044070
[158] Singh, B. P.; Ghosh, S. G., Shadow of Schwarzschild-Tangherlini black holes, Ann. Phys., NY, 395, 127-37 (2018) · Zbl 1394.83014 · doi:10.1016/j.aop.2018.05.010
[159] Singh, D. V.; Bhardwaj, V. K.; Upadhyay, S., Thermodynamic properties, thermal image and phase transition of Einstein-Gauss-Bonnet black hole coupled with nonlinear electrodynamics, Eur. Phys. J. Plus, 137, 1-13 (2022) · doi:10.1140/epjp/s13360-022-03208-2
[160] Singh, D. V.; Shukla, A.; Upadhyay, S., Quasinormal modes, shadow and thermodynamics of black holes coupled with nonlinear electrodynamics and cloud of strings, Ann. Phys., NY, 447 (2022) · Zbl 1516.83041 · doi:10.1016/j.aop.2022.169157
[161] Iyer, S.; Will, C. M., Black-hole normal modes: a WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering, Phys. Rev. D, 35, 3621 (1987) · doi:10.1103/PhysRevD.35.3621
[162] Iyer, S., Black-hole normal modes: a WKB approach. II. Schwarzschild black holes, Phys. Rev. D, 35, 3632 (1987) · doi:10.1103/PhysRevD.35.3632
[163] Konoplya, R., Quasinormal behavior of the D-dimensional Schwarzschild black hole and the higher order WKB approach, Phys. Rev. D, 68 (2003) · doi:10.1103/PhysRevD.68.024018
[164] Schutz, B. F.; Will, C. M., Black hole normal modes: a semianalytic approach, Astrophys. J., 291, L33-L36 (1985) · doi:10.1086/184453
[165] Konoplya, R., Quasinormal modes of the Schwarzschild black hole and higher order WKB approach, J. Phys. Stud., 8, 93 (2004) · Zbl 1081.83531 · doi:10.30970/jps.08.93
[166] Matyjasek, J.; Opala, M., Quasinormal modes of black holes: the improved semianalytic approach, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.024011
[167] Chen, H.; Sathiyaraj, T.; Hassanabadi, H.; Yang, Y.; Long, Z-W; Tu, F-Q, Quasinormal modes of the EGUP-corrected Schwarzschild black hole, Indian J. Phys., 1-9 (2023) · doi:10.1007/s12648-023-02734-8
[168] Gundlach, C.; Price, R. H.; Pullin, J., Late-time behavior of stellar collapse and explosions. I. Linearized perturbations, Phys. Rev. D, 49, 883 (1994) · doi:10.1103/PhysRevD.49.883
[169] Silva, C.; Brito, F., Quantum tunneling radiation from self-dual black holes, Phys. Lett. B, 725, 456-62 (2013) · Zbl 1364.83025 · doi:10.1016/j.physletb.2013.07.033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.