×

Quasinormal modes of bumblebee wormhole. (English) Zbl 1475.83025

Summary: In this work, we calculate the quasinormal frequencies from a bumblebee traversable wormhole. The bumblebee wormhole model is based on the bumblebee gravity, which exhibits a spontaneous Lorentz symmetry breaking. Supporting by the Lorentz violation parameter \(\lambda\), this model allows for the fulfillment of the flare-out and energy conditions, granted non-exotic matter to the wormhole. We analyze the parameters of the bumblebee wormhole in order to obtain a Regge-Wheeler’s equation with a bell-shaped potential. We obtain the quasinormal modes (QNMs) via the WKB approximation method for both scalar and gravitational perturbations. The time domain has decreasing oscillation (damping) profiles for the bumblebee wormhole.

MSC:

83C35 Gravitational waves
83C57 Black holes
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
81R40 Symmetry breaking in quantum theory
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory

References:

[1] Einstein A and Rosen N 1935 Phys. Rev.48 73 · Zbl 0012.13401 · doi:10.1103/PhysRev.48.73
[2] Misner C W and Wheeler J A 1957 Ann. Phys.2 525 · Zbl 0078.19106 · doi:10.1016/0003-4916(57)90049-0
[3] Hochberg D and Visser M 1997 Phys. Rev. D 56 4745 · doi:10.1103/PhysRevD.56.4745
[4] Morris M S, Thorne K S and Yurtsever U 1988 Phys. Rev. Lett.61 1446 · doi:10.1103/PhysRevLett.61.1446
[5] Morris M S and Thorne K S 1988 Am. J. Phys.56 395 · Zbl 0957.83529 · doi:10.1119/1.15620
[6] Visser M, Kar S and Dadhich N 2003 Phys. Rev. Lett.90 201102 · Zbl 1267.83134 · doi:10.1103/PhysRevLett.90.201102
[7] Bueno P, Cano P A, Goelen F, Hertog T and Vercnocke B 2018 Phys. Rev. D 97 024040 · doi:10.1103/PhysRevD.97.024040
[8] Abbott B P et al and LIGO Scientific and Virgo Collaborations 2016 Phys. Rev. Lett.116 061102 · doi:10.1103/PhysRevLett.116.061102
[9] Kar S, Dadhich N and Visser M 2004 Pramana63 859 · doi:10.1007/BF02705207
[10] Shaikh R 2018 Phys. Rev. D 98 064033 · doi:10.1103/PhysRevD.98.064033
[11] Godani N and Samanta G C 2019 Int. Mod. Phys. D 28 1950039 · Zbl 1431.83134 · doi:10.1142/S0218271819500391
[12] Mehdizadeh M R, Zangeneh M K and Lobo F S N 2015 Phys. Rev. D 91 084004 · doi:10.1103/PhysRevD.91.084004
[13] Völkel S H and Kokkotas K D 2018 Class. Quantum Grav.35 105018 · Zbl 1391.83050 · doi:10.1088/1361-6382/aabce6
[14] Dehghani M H and Hendi S H 2009 Gen. Relativ. Gravit.41 1853 · Zbl 1177.83106 · doi:10.1007/s10714-009-0756-3
[15] Övgün A, Jusufi K and Sakalli I 2019 Phys. Rev. D 99 024042 · doi:10.1103/PhysRevD.99.024042
[16] Kostelecky V A and Samuel S 1989 Phys. Rev. D 39 683 · doi:10.1103/PhysRevD.39.683
[17] Colladay D and Kostelecky V A 1998 Phys. Rev. D 58 116002 · doi:10.1103/PhysRevD.58.116002
[18] Kostelecky V A 2004 Phys. Rev. D 69 105009 · doi:10.1103/PhysRevD.69.105009
[19] Casana R, Cavalcante A, Poulis F P and Santos E B 2018 Phys. Rev. D 97 104001 · doi:10.1103/PhysRevD.97.104001
[20] Jusufi K 2017 Int. J. Geom. Methods Mod. Phys.14 1750179 · Zbl 1386.83100 · doi:10.1142/S0219887817501791
[21] Konoplya R A and Molina C 2005 Phys. Rev. D 71 124009 · doi:10.1103/PhysRevD.71.124009
[22] Konoplya R A and Zhidenko A 2016 J. Cosmol. Astropart. Phys.JCAP12(2016) 043 · doi:10.1088/1475-7516/2016/12/043
[23] Myrzakulov R, Sebastiani L, Vagnozzi S and Zerbini S 2016 Class. Quantum Grav.33 125005 · Zbl 1342.83040 · doi:10.1088/0264-9381/33/12/125005
[24] Rincón Á and Panotopoulos G 2018 Phys. Rev. D 97 024027 · doi:10.1103/PhysRevD.97.024027
[25] Hendi S H 2012 Prog. Theor. Phys.127 907 · Zbl 1251.83040 · doi:10.1143/PTP.127.907
[26] Rincón Á and Panotopoulos G 2018 Eur. Phys. J. C 78 858 · doi:10.1140/epjc/s10052-018-6352-5
[27] Regge T and Wheeler J A 1957 Phys. Rev.108 1063 · Zbl 0079.41902 · doi:10.1103/PhysRev.108.1063
[28] Iyer S and Will C M 1987 Phys. Rev. D 35 3621 · doi:10.1103/PhysRevD.35.3621
[29] Kord Zangeneh M, Lobo F S N and Dehghani M H 2015 Phys. Rev. D 92 124049 · doi:10.1103/PhysRevD.92.124049
[30] Kim S W 2005 Nuovo Cimento B 120 1235
[31] Perez Bergliaffa S E and Hibberd K E 2000 Phys. Rev. D 62 044045 · doi:10.1103/PhysRevD.62.044045
[32] Kim S W 2004 J. Kor. Phys. Soc.45 S193 · doi:10.1007/s00234-004-1330-z
[33] Kim S W 2008 Prog. Theor. Phys. Suppl.172 21 · Zbl 1153.83428 · doi:10.1143/PTPS.172.21
[34] Santos V, Maluf R V and Almeida C A S 2016 Phys. Rev. D 93 084047 · doi:10.1103/PhysRevD.93.084047
[35] Zerilli F J 1970 Phys. Rev. Lett.24 737 · doi:10.1103/PhysRevLett.24.737
[36] Boonserm P, Ngampitipan T and Visser M 2013 Phys. Rev. D 88 041502 · doi:10.1103/PhysRevD.88.041502
[37] Chandrasekhar S 1985 The Mathematical Theory of Black Holes (Oxford: Clarendon) p 646
[38] Bronnikov K A, Konoplya R A and Zhidenko A 2012 Phys. Rev. D 86 024028 · doi:10.1103/PhysRevD.86.024028
[39] Konoplya R A 2003 Phys. Rev. D 68 024018 · doi:10.1103/PhysRevD.68.024018
[40] Gundlach C, Price R H and Pullin J 1994 Phys. Rev. D 49 883 · doi:10.1103/PhysRevD.49.883
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.