×

The charged black-hole bomb: a lower bound on the charge-to-mass ratio of the explosive scalar field. (English) Zbl 1367.83051

Summary: The well-known superradiant amplification mechanism allows a charged scalar field of proper mass \(\mu\) and electric charge \(q\) to extract the Coulomb energy of a charged Reissner-Nordström black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical studies of this composed physical system have shown that, in the linearized regime, the inequality \(q / \mu > 1\) provides a necessary condition for the development of the superradiant instability. In the present paper, we use analytical techniques to study the instability properties of the charged black-hole bomb in the regime of linearized scalar fields. In particular, we prove that the lower bound \(\frac{q}{\mu} > \sqrt{\frac{r_{\mathrm{m}} / r_- -1}{r_{\mathrm m} / r_+ - 1}}\) provides a necessary condition for the development of the superradiant instability in this composed physical system (here \(r_\pm\) are the horizon radii of the charged Reissner-Nordström black hole and \(r_{\mathrm m}\) is the radius of the confining mirror). This analytically derived lower bound on the superradiant instability regime of the composed black-hole-charged-scalar-field-mirror system is shown to agree with direct numerical computations of the instability spectrum.

MSC:

83C57 Black holes

References:

[1] Zel’dovich, Ya. B., Pis’ma Zh. Eksp. Teor. Fiz.. Pis’ma Zh. Eksp. Teor. Fiz., JETP Lett.. Pis’ma Zh. Eksp. Teor. Fiz.. Pis’ma Zh. Eksp. Teor. Fiz., JETP Lett., Zh. Eksp. Teor. Fiz.. Pis’ma Zh. Eksp. Teor. Fiz.. Pis’ma Zh. Eksp. Teor. Fiz., JETP Lett.. Pis’ma Zh. Eksp. Teor. Fiz.. Pis’ma Zh. Eksp. Teor. Fiz., JETP Lett., Zh. Eksp. Teor. Fiz., Sov. Phys. JETP, 35, 1085 (1972)
[2] Press, W. H.; Teukolsky, S. A., Astrophys. J., 185, 649 (1973)
[3] Vilenkin, A. V., Phys. Lett. B, 78, 301 (1978)
[4] Hod, S., Phys. Lett. B, 736, 398 (2014) · Zbl 1317.83047
[5] Hod, S., Phys. Lett. B, 751, 177 (2015) · Zbl 1360.83033
[6] Herdeiro, C. A.R.; Radu, E.; Rúnarsson, H. F., Phys. Rev. D, 92, Article 084059 pp. (2015)
[7] Hod, S., Phys. Lett. B, 708, 320 (2012)
[8] Bekenstein, J. D., Phys. Rev. D, 7, 949 (1973)
[9] Hod, S., Phys. Rev. D, 91, Article 044047 pp. (2015)
[10] Degollado, J. C.; Herdeiro, C. A.R.; Rúnarsson, H. F., Phys. Rev. D, 88, Article 063003 pp. (2013)
[11] Hod, S., Phys. Rev. D, 88, Article 064055 pp. (2013)
[12] Hod, S., Eur. Phys. J. C, 74, 3137 (2014)
[13] Chandrasekhar, S., The Mathematical Theory of Black Holes (1983), Oxford University Press: Oxford University Press New York · Zbl 0511.53076
[14] Hod, S.; Piran, T., Phys. Rev. D, 58, Article 024019 pp. (1998)
[15] Hartman, T.; Song, W.; Strominger, A., J. High Energy Phys., 1003, Article 118 pp. (2010)
[16] Hod, S., Class. Quantum Gravity, 23, Article L23 pp. (2006) · Zbl 1091.83020
[17] Hod, S., Phys. Lett. B, 747, 339 (2015) · Zbl 1369.83044
[18] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1970), Dover Publications: Dover Publications New York
[19] Schwinger, J., Phys. Rev., 82, 664 (1951) · Zbl 0043.42201
[20] Damour, T.; Ruffini, R., Phys. Rev. Lett., 35, 463 (1975)
[21] Hod, S., Phys. Lett. B, 693, 339 (2010)
[22] Levchenko, B. B.
[23] Sanchis-Gual, N.; Degollado, J. C.; Montero, P. J.; Font, J. A.; Herdeiro, C.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.