×

Gravitational waves effects in a Lorentz-violating scenario. (English) Zbl 07894254

Summary: This paper focuses on how the production and polarization of gravitational waves are affected by spontaneous Lorentz symmetry breaking, which is driven by a self-interacting vector field. Specifically, we examine the impact of a smooth quadratic potential and a non-minimal coupling, discussing the constraints and causality features of the linearized Einstein equation. To analyze the polarization states of a plane wave, we consider a fixed vacuum expectation value (VEV) of the vector field. Remarkably, we verify that a space-like background vector field modifies the polarization plane and introduces a longitudinal degree of freedom. In order to investigate the Lorentz violation effect on the quadrupole formula, we use the modified Green function. Finally, we show that the space-like component of the background field leads to a third-order time derivative of the quadrupole moment, and the bounds for the Lorentz-breaking coefficients are estimated as well.

MSC:

81-XX Quantum theory
83-XX Relativity and gravitational theory

References:

[1] Kosteleckỳ, V. A.; Samuel, S., Spontaneous breaking of Lorentz symmetry in string theory, Phys. Rev. D, 39, 2, 683, 1989
[2] Kosteleckỳ, V. A.; Samuel, S., Phenomenological gravitational constraints on strings and higher-dimensional theories, Phys. Rev. Lett., 63, 3, 224, 1989
[3] Alfaro, J.; Morales-Tecotl, H. A.; Urrutia, L. F., Quantum gravity corrections to neutrino propagation, Phys. Rev. Lett., 84, 11, 2318, 2000
[4] Alfaro, J.; Morales-Tecotl, H. A.; Urrutia, L. F., Loop quantum gravity and light propagation, Phys. Rev. D, 65, 10, Article 103509 pp., 2002
[5] Carroll, S. M.; Harvey, J. A.; Kosteleckỳ, V. A.; Lane, C. D.; Okamoto, T., Noncommutative field theory and Lorentz violation, Phys. Rev. Lett., 87, 14, Article 141601 pp., 2001
[6] Araújo Filho, A.; Zare, S.; Porfírio, P.; Kříž, J.; Hassanabadi, H., Thermodynamics and evaporation of a modified Schwarzschild black hole in a non-commutative gauge theory, Phys. Lett. B, 838, Article 137744 pp., 2023 · Zbl 1519.83049
[7] Heidari, N.; Hassanabadi, H.; Araújo Filho, A. A.; Kriz, J.; Zare, S.; Porfírio, P., Gravitational signatures of a non-commutative stable black hole, Phys. Dark Universe, Article 101382 pp., 2023
[8] Hořava, P., Quantum gravity at a Lifshitz point, Phys. Rev. D, 79, 8, Article 084008 pp., 2009
[9] Cohen, A. G.; Glashow, S. L., Very special relativity, Phys. Rev. Lett., 97, 2, Article 021601 pp., 2006 · Zbl 1228.83009
[10] Araújo Filho, A. A.; Furtado, J.; Hassanabadi, H.; Reis, J., Thermal analysis of photon-like particles in rainbow gravity, Phys. Dark Universe, 42, Article 101310 pp., 2023
[11] Colladay, D.; Kosteleckỳ, V. A., Cpt violation and the standard model, Phys. Rev. D, 55, 11, 6760, 1997
[12] Jackiw, R.; Kosteleckỳ, V. A., Radiatively induced Lorentz and cpt violation in electrodynamics, Phys. Rev. Lett., 82, 18, 3572, 1999
[13] Araújo Filho, A. A.; Maluf, R., Thermodynamic properties in higher-derivative electrodynamics, Braz. J. Phys., 51, 820-830, 2021
[14] Araújo Filho, A. A.; Petrov, A. Y., Higher-derivative Lorentz-breaking dispersion relations: a thermal description, Eur. Phys. J. C, 81, 9, 843, 2021
[15] Araújo Filho, A. A., Particles in loop quantum gravity formalism: a thermodynamical description, Ann. Phys., Article 2200383 pp., 2022 · Zbl 07770800
[16] Araújo Filho, A. A.; Petrov, A. Y., Bouncing universe in a heat bath, Int. J. Mod. Phys. A, 36, 34n35, Article 2150242 pp., 2021
[17] Araújo Filho, A. A., Thermal aspects of field theories, 2022
[18] Kosteleckỳ, V. A.; Mewes, M., Lorentz and cpt violation in neutrinos, Phys. Rev. D, 69, 1, Article 016005 pp., 2004
[19] Bluhm, R.; Kosteleckỳ, V. A.; Lane, C. D., Cpt and Lorentz tests with muons, Phys. Rev. Lett., 84, 6, 1098, 2000
[20] Araújo Filho, A. A.; Hassanabadi, H.; Reis, J.; Lisboa-Santos, L., Thermodynamics of a quantum ring modified by Lorentz violation, Phys. Scr., 98, 6, Article 065943 pp., 2023
[21] Bluhm, R.; Kosteleckỳ, V. A.; Russell, N., Cpt and Lorentz tests in hydrogen and antihydrogen, Phys. Rev. Lett., 82, 11, 2254, 1999
[22] Araújo Filho, A. A., Thermodynamics of massless particles in curved spacetime, 2022, preprint
[23] Li, G.-P.; Pu, J.; Jiang, Q.-Q.; Zu, X.-T., An application of Lorentz-invariance violation in black hole thermodynamics, Eur. Phys. J. C, 77, 1-10, 2017
[24] Cambiaso, M.; Lehnert, R.; Potting, R., Massive photons and Lorentz violation, Phys. Rev. D, 85, 8, Article 085023 pp., 2012
[25] Araújo Filho, A. A.; Reis, J.; Ghosh, S., Quantum gases on a torus, (Modern Physics. Modern Physics, International Journal of Geometric Methods, 2023), 2350178 · Zbl 07793974
[26] Araújo Filho, A. A.; Reis, J., How does geometry affect quantum gases?, Int. J. Mod. Phys. A, 37, 11n12, Article 2250071 pp., 2022
[27] Araújo Filho, A. A.; Reis, J.; Ghosh, S., Fermions on a torus knot, Eur. Phys. J. Plus, 137, 5, 614, 2022
[28] Kosteleckỳ, V. A.; Russell, N., Data tables for Lorentz and c p t violation, Rev. Mod. Phys., 83, 1, 11, 2011
[29] Bluhm, R.; Fung, S.-H.; Kosteleckỳ, V. A., Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity, Phys. Rev. D, 77, 6, Article 065020 pp., 2008
[30] Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116, 6, Article 061102 pp., 2016
[31] Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R., Gw150914: the advanced ligo detectors in the era of first discoveries, Phys. Rev. Lett., 116, 13, Article 131103 pp., 2016
[32] Araújo Filho, A. A., Analysis of a regular black hole in Verlinde’s gravity, Class. Quantum Gravity, 41, 1, Article 015003 pp., 2023 · Zbl 1533.83019
[33] Araújo Filho, A. A., Implications of a Simpson-Visser solution in Verlinde’s framework, Eur. Phys. J. C, 84, 1, 73, 2024
[34] Bluhm, R.; Kosteleckỳ, V. A., Spontaneous Lorentz violation, Nambu-Goldstone modes, and gravity, Phys. Rev. D, 71, 6, Article 065008 pp., 2005
[35] Maluf, R.; Araújo Filho, A.; Cruz, W.; Almeida, C., Antisymmetric tensor propagator with spontaneous Lorentz violation, Europhys. Lett., 124, 6, Article 61001 pp., 2019
[36] Sagi, E., Propagation of gravitational waves in the generalized tensor-vector-scalar theory, Phys. Rev. D, 81, 6, Article 064031 pp., 2010
[37] Liang, D.; Xu, R.; Lu, X.; Shao, L., Polarizations of gravitational waves in the bumblebee gravity model, Phys. Rev. D, 106, 12, Article 124019 pp., 2022
[38] Kosteleckỳ, V. A., Gravity, Lorentz violation, and the standard model, Phys. Rev. D, 69, 10, Article 105009 pp., 2004
[39] Araújo Filho, A. A.; Nascimento, J. R.; Petrov, A. Y.; Porfírio, P. J., Vacuum solution within a metric-affine bumblebee gravity, Phys. Rev. D, 108, 8, Article 085010 pp., 2023
[40] Maluf, R.; Santos, V.; Cruz, W.; Almeida, C., Matter-gravity scattering in the presence of spontaneous Lorentz violation, Phys. Rev. D, 88, 2, Article 025005 pp., 2013
[41] Araújo Filho, A. A.; Hassanabadi, H.; Heidari, N.; Kriz, J.; Zare, S., Gravitational traces of bumblebee gravity in metric-affine formalism, Class. Quantum Gravity, 41, 5, Article 055003 pp., 2024 · Zbl 1535.83092
[42] Martín-Ruiz, A.; Escobar, C., Local effects of the quantum vacuum in Lorentz-violating electrodynamics, Phys. Rev. D, 95, 3, Article 036011 pp., 2017
[43] Hernaski, C., Quantization and stability of bumblebee electrodynamics, Phys. Rev. D, 90, 12, Article 124036 pp., 2014
[44] Maluf, R.; Almeida, C.; Casana, R.; Ferreira, M., Einstein-Hilbert graviton modes modified by the Lorentz-violating bumblebee field, Phys. Rev. D, 90, 2, Article 025007 pp., 2014
[45] Araújo Filho, A. A., Lorentz-violating scenarios in a thermal reservoir, Eur. Phys. J. Plus, 136, 4, 1-14, 2021
[46] Eling, C.; Jacobson, T.; Mattingly, D., Einstein-aether theory, (Deserfest, 2006, World Scientific), 163-179 · Zbl 1176.83014
[47] Le Tiec, A.; Novak, J., Theory of gravitational waves, (An Overview of Gravitational Waves: Theory, Sources and Detection, 2017, World Scientific), 1-41
[48] Liang, D.; Gong, Y.; Hou, S.; Liu, Y., Polarizations of gravitational waves in f (r) gravity, Phys. Rev. D, 95, 10, Article 104034 pp., 2017
[49] Zhang, P.-M.; Duval, C.; Gibbons, G.; Horvathy, P., Velocity memory effect for polarized gravitational waves, J. Cosmol. Astropart. Phys., 2018, 05, Article 030 pp., 2018 · Zbl 1536.83007
[50] Hou, S.; Gong, Y.; Liu, Y., Polarizations of gravitational waves in Horndeski theory, Eur. Phys. J. C, 78, 5, 378, 2018
[51] Mewes, M., Signals for Lorentz violation in gravitational waves, Phys. Rev. D, 99, 10, Article 104062 pp., 2019
[52] Kosteleckỳ, V. A.; Mewes, M., Testing local Lorentz invariance with gravitational waves, Phys. Lett. B, 757, 510-514, 2016 · Zbl 1360.83017
[53] Kosteleckỳ, V. A.; Mewes, M., Lorentz and diffeomorphism violations in linearized gravity, Phys. Lett. B, 779, 136-142, 2018 · Zbl 1383.83012
[54] Will, C. M., Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries, Phys. Rev. D, 57, 4, 2061, 1998
[55] Aharmim, B.; Ahmed, S.; Anthony, A.; Barros, N.; Beier, E.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.; Blucher, E., Tests of Lorentz invariance at the Sudbury neutrino observatory, Phys. Rev. D, 98, 11, Article 112013 pp., 2018
[56] Barabash, A.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.; Danevich, F.; d’Angelo, S.; Incicchitti, A., Final results of the aurora experiment to study 2 β decay of cd 116 with enriched cd 116 wo 4 crystal scintillators, Phys. Rev. D, 98, 9, Article 092007 pp., 2018
[57] Adey, D.; An, F.; Balantekin, A.; Band, H.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G.; Cao, J.; Chang, J., Search for a time-varying electron antineutrino signal at Daya Bay, Phys. Rev. D, 98, 9, Article 092013 pp., 2018
[58] Babusci, D.; Balwierz-Pytko, I.; Bencivenni, G.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Balkeståhl, L. C.; Capon, G.; Ceradini, F., Test of cpt and Lorentz symmetry in entangled neutral kaons with the kloe experiment, Phys. Lett. B, 730, 89-94, 2014
[59] Di Domenico, A., Cpt symmetry and quantum mechanics tests in the neutral kaon system at kloe, Found. Phys., 40, 7, 852-866, 2010 · Zbl 1197.81191
[60] Abazov, V., V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 108, (2012) 151804, Phys. Rev. Lett., 108, Article 151804 pp., 2012
[61] Sytema, A., A. Sytema et al., Phys. Rev. C 94 (2016) 025503, Phys. Rev. C, 94, Article 025503 pp., 2016
[62] Müller, S., S.E. Müller et al., Phys. Rev. D 88 (2013) 071901(R), Phys. Rev. D, 88, Article 071901 pp., 2013
[63] Pruttivarasin, T.; Ramm, M.; Porsev, S.; Tupitsyn, I.; Safronova, M.; Hohensee, M.; Häffner, H., Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry, Nature, 517, 7536, 592, 2015
[64] Botermann, B.; Bing, D.; Geppert, C.; Gwinner, G.; Hänsch, T. W.; Huber, G.; Karpuk, S.; Krieger, A.; Kühl, T.; Nörtershäuser, W., Test of time dilation using stored li+ ions as clocks at relativistic speed, Phys. Rev. Lett., 113, 12, Article 120405 pp., 2014
[65] Hohensee, M.; Leefer, N.; Budker, D.; Harabati, C.; Dzuba, V.; Flambaum, V., Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium, Phys. Rev. Lett., 111, 5, Article 050401 pp., 2013
[66] Kislat, F., Constraints on Lorentz invariance violation from optical polarimetry of astrophysical objects, Symmetry, 10, 11, 596, 2018
[67] Parker, S. R.; Mewes, M.; Baynes, F. N.; Tobar, M. E., Bounds on higher-order Lorentz-violating photon sector coefficients from an asymmetric optical ring resonator experiment, Phys. Lett. A, 379, 42, 2681-2684, 2015
[68] Shao, C.-G.; Chen, Y.-F.; Tan, Y.-J.; Yang, S.-Q.; Luo, J.; Tobar, M. E.; Long, J.; Weisman, E.; Kostelecky, A., Combined search for a Lorentz-violating force in short-range gravity varying as the inverse sixth power of distance, 2018, preprint
[69] Abbott, B. P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V., Gw170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119, 16, Article 161101 pp., 2017
[70] Shao, C.-G.; Chen, Y.-F.; Sun, R.; Cao, L.-S.; Zhou, M.-K.; Hu, Z.-K.; Yu, C.; Müller, H., Limits on Lorentz violation in gravity from worldwide superconducting gravimeters, Phys. Rev. D, 97, 2, Article 024019 pp., 2018
[71] Casana, R.; Cavalcante, A.; Poulis, F.; Santos, E., Exact Schwarzschild-like solution in a bumblebee gravity model, Phys. Rev. D, 97, 10, Article 104001 pp., 2018
[72] Bourgoin, A.; Le Poncin-Lafitte, C.; Hees, A.; Bouquillon, S.; Francou, G.; Angonin, M.-C., Lorentz symmetry violations from matter-gravity couplings with lunar laser ranging, Phys. Rev. Lett., 119, 20, Article 201102 pp., 2017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.