×

Quasi-normal modes and microscopic description of 2D black holes. (English) Zbl 1521.83094

Summary: We investigate the possibility of using quasi-normal modes (QNMs) to probe the microscopic structure of two-dimensional (2D) anti-de Sitter (\(\mathrm{AdS}_2\)) dilatonic black holes. We first extend previous results on the QNMs spectrum, found for external massless scalar perturbations, to the case of massive scalar perturbations. We find that the quasi-normal frequencies are purely imaginary and scale linearly with the overtone number. Motivated by this and extending previous results regarding Schwarzschild black holes, we propose a microscopic description of the 2D black hole in terms of a coherent state of \(N\) massless particles quantized on a circle, with occupation numbers sharply peaked on the characteristic QNMs frequency \(\hat{\omega}\). We further model the black hole as a statistical ensemble of \(N\) decoupled quantum oscillators of frequency \(\hat{\omega}\). This allows us to recover the Bekenstein-Hawking (BH) entropy \(S\) of the hole as the leading contribution to the Gibbs entropy for the set of oscillators, in the high-temperature regime, and to show that \(S = N\). Additionally, we find sub-leading logarithmic corrections to the BH entropy. We further corroborate this microscopic description by outlining a holographic correspondence between QNMs in the \(\mathrm{AdS}_2\) bulk and the de Alfaro-Fubini-Furlan conformally invariant quantum mechanics. Our results strongly suggest that modelling a black hole as a coherent state of particles and as a statistical ensemble of decoupled harmonic oscillators is always a good approximation in the large black-hole mass, large overtone number limit.

MSC:

83C57 Black holes
83C80 Analogues of general relativity in lower dimensions
83C45 Quantization of the gravitational field
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83E30 String and superstring theories in gravitational theory

References:

[1] Verlinde, EP, Emergent Gravity and the Dark Universe, SciPost Phys., 2, 016 (2017) · doi:10.21468/SciPostPhys.2.3.016
[2] Cadoni, M.; Casadio, R.; Giusti, A.; Mück, W.; Tuveri, M., Effective Fluid Description of the Dark Universe, Phys. Lett. B, 776, 242 (2018) · doi:10.1016/j.physletb.2017.11.058
[3] M. Tuveri and M. Cadoni, Galactic dynamics and long-range quantum gravity, Phys. Rev. D100 (2019) 024029 [arXiv:1904.11835] [INSPIRE].
[4] Dvali, G., Entropy Bound and Unitarity of Scattering Amplitudes, JHEP, 03, 126 (2021) · Zbl 1461.81139 · doi:10.1007/JHEP03(2021)126
[5] S. Bose, A. Mazumdar and M. Toroš, Infrared scaling for a graviton condensate, arXiv:2110.04536 [INSPIRE].
[6] Dvali, G.; Gomez, C., Black Hole’s Quantum N-Portrait, Fortsch. Phys., 61, 742 (2013) · Zbl 1338.83071 · doi:10.1002/prop.201300001
[7] Dvali, G.; Gomez, C., Black Holes as Critical Point of Quantum Phase Transition, Eur. Phys. J. C, 74, 2752 (2014) · doi:10.1140/epjc/s10052-014-2752-3
[8] G. Dvali and C. Gomez, Quantum Compositeness of Gravity: Black Holes, AdS and Inflation, JCAP01 (2014) 023 [arXiv:1312.4795] [INSPIRE].
[9] Cadoni, M.; Tuveri, M.; Sanna, AP, Long-Range Quantum Gravity, Symmetry, 12, 1396 (2020) · doi:10.3390/sym12091396
[10] Dvali, G.; Gomez, C., Black Hole’s 1/N Hair, Phys. Lett. B, 719, 419 (2013) · Zbl 1370.83046 · doi:10.1016/j.physletb.2013.01.020
[11] Dvali, G.; Giudice, GF; Gomez, C.; Kehagias, A., UV-Completion by Classicalization, JHEP, 08, 108 (2011) · Zbl 1298.81359 · doi:10.1007/JHEP08(2011)108
[12] Dvali, G.; Gomez, C.; Kehagias, A., Classicalization of Gravitons and Goldstones, JHEP, 11, 070 (2011) · Zbl 1306.81149 · doi:10.1007/JHEP11(2011)070
[13] Lunin, O.; Mathur, SD, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B, 623, 342 (2002) · Zbl 1036.83503 · doi:10.1016/S0550-3213(01)00620-4
[14] O. Lunin and S.D. Mathur, Statistical interpretation of Bekenstein entropy for systems with a stretched horizon, Phys. Rev. Lett.88 (2002) 211303 [hep-th/0202072] [INSPIRE]. · Zbl 1246.83129
[15] Mathur, SD, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys., 53, 793 (2005) · Zbl 1116.83300 · doi:10.1002/prop.200410203
[16] T. Ikeda et al., Black-hole microstate spectroscopy: Ringdown, quasinormal modes, and echoes, Phys. Rev. D104 (2021) 066021 [arXiv:2103.10960] [INSPIRE].
[17] Mathur, SD, The nature of the gravitational vacuum, Int. J. Mod. Phys. D, 28, 1944005 (2019) · doi:10.1142/S021827181944005X
[18] Mathur, SD, The VECRO hypothesis, Int. J. Mod. Phys. D, 29, 2030009 (2020) · Zbl 1457.83037 · doi:10.1142/S0218271820300098
[19] E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav.26 (2009) 163001 [arXiv:0905.2975] [INSPIRE]. · Zbl 1173.83001
[20] K.D. Kokkotas and B.G. Schmidt, Quasinormal modes of stars and black holes, Living Rev. Rel.2 (1999) 2 [gr-qc/9909058] [INSPIRE]. · Zbl 0984.83002
[21] Konoplya, RA; Zhidenko, A., Quasinormal modes of black holes: From astrophysics to string theory, Rev. Mod. Phys., 83, 793 (2011) · doi:10.1103/RevModPhys.83.793
[22] M. Maggiore, The Physical interpretation of the spectrum of black hole quasinormal modes, Phys. Rev. Lett.100 (2008) 141301 [arXiv:0711.3145] [INSPIRE]. · Zbl 1228.83073
[23] S. Hod, Bohr’s correspondence principle and the area spectrum of quantum black holes, Phys. Rev. Lett.81 (1998) 4293 [gr-qc/9812002] [INSPIRE]. · Zbl 0949.83037
[24] O. Dreyer, Quasinormal modes, the area spectrum, and black hole entropy, Phys. Rev. Lett.90 (2003) 081301 [gr-qc/0211076] [INSPIRE].
[25] G. Kunstatter, d-dimensional black hole entropy spectrum from quasinormal modes, Phys. Rev. Lett.90 (2003) 161301 [gr-qc/0212014] [INSPIRE]. · Zbl 1267.83062
[26] C. Corda, Quasi-Normal Modes: The ‘Electrons’ of Black Holes as ‘Gravitational Atoms’ ? Implications for the Black Hole Information Puzzle, Adv. High Energy Phys.2015 (2015) 867601 [arXiv:1503.00565] [INSPIRE]. · Zbl 1433.83015
[27] J.D. Bekenstein, The quantum mass spectrum of the Kerr black hole, Lett. Nuovo Cim.11 (1974) 467 [INSPIRE].
[28] J.D. Bekenstein and V.F. Mukhanov, Spectroscopy of the quantum black hole, Phys. Lett. B360 (1995) 7 [gr-qc/9505012] [INSPIRE].
[29] G. Immirzi, Quantum gravity and Regge calculus, Nucl. Phys. B Proc. Suppl.57 (1997) 65 [gr-qc/9701052] [INSPIRE]. · Zbl 0976.83504
[30] I. Agullo, J.F. Barbero G., J. Díaz-Polo, E. Fernández-Borja and E.J.S. Villasenor, Black hole state counting in LQG: A Number theoretical approach, Phys. Rev. Lett.100 (2008) 211301 [arXiv:0802.4077] [INSPIRE]. · Zbl 1228.83053
[31] Cadoni, M.; Oi, M.; Sanna, AP, Quasinormal modes and microscopic structure of the Schwarzschild black hole, Phys. Rev. D, 104, L121502 (2021) · doi:10.1103/PhysRevD.104.L121502
[32] Casadio, R.; Orlandi, A., Quantum Harmonic Black Holes, JHEP, 08, 025 (2013) · Zbl 1342.83135 · doi:10.1007/JHEP08(2013)025
[33] R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B252 (1985) 343 [INSPIRE].
[34] C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B126 (1983) 41 [INSPIRE].
[35] Grumiller, D.; Kummer, W.; Vassilevich, DV, Dilaton gravity in two-dimensions, Phys. Rept., 369, 327 (2002) · Zbl 0998.83038 · doi:10.1016/S0370-1573(02)00267-3
[36] Cadoni, M.; Mignemi, S., Nonsingular four-dimensional black holes and the Jackiw-Teitelboim theory, Phys. Rev. D, 51, 4319 (1995) · doi:10.1103/PhysRevD.51.4319
[37] M. Cadoni, Trace anomaly and Hawking effect in generic 2-D dilaton gravity theories, Phys. Rev. D53 (1996) 4413 [gr-qc/9510012] [INSPIRE].
[38] Kim, WT; Oh, JJ, Dilaton driven Hawking radiation in AdS_2black hole, Phys. Lett. B, 461, 189 (1999) · Zbl 0992.83046 · doi:10.1016/S0370-2693(99)00856-4
[39] Engelsöy, J.; Mertens, TG; Verlinde, H., An investigation of AdS_2backreaction and holography, JHEP, 07, 139 (2016) · Zbl 1390.83104 · doi:10.1007/JHEP07(2016)139
[40] Mertens, TG, Towards Black Hole Evaporation in Jackiw-Teitelboim Gravity, JHEP, 07, 097 (2019) · Zbl 1418.83040 · doi:10.1007/JHEP07(2019)097
[41] Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H., The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP, 12, 063 (2019) · Zbl 1431.83123 · doi:10.1007/JHEP12(2019)063
[42] Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y., The Page curve of Hawking radiation from semiclassical geometry, JHEP, 03, 149 (2020) · Zbl 1435.83110 · doi:10.1007/JHEP03(2020)149
[43] A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077 [INSPIRE].
[44] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].
[45] Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A., Replica Wormholes and the Entropy of Hawking Radiation, JHEP, 05, 013 (2020) · Zbl 1437.83084 · doi:10.1007/JHEP05(2020)013
[46] Goto, K.; Hartman, T.; Tajdini, A., Replica wormholes for an evaporating 2D black hole, JHEP, 04, 289 (2021) · Zbl 1462.83015 · doi:10.1007/JHEP04(2021)289
[47] Verheijden, E.; Verlinde, E., From the BTZ black hole to JT gravity: geometrizing the island, JHEP, 11, 092 (2021) · Zbl 1521.83155 · doi:10.1007/JHEP11(2021)092
[48] M. Cadoni and A.P. Sanna, Unitarity and Page curve for evaporation of 2D AdS black holes, arXiv:2106.14738 [INSPIRE].
[49] Kitaev, A.; Suh, SJ, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP, 05, 183 (2018) · Zbl 1391.83080 · doi:10.1007/JHEP05(2018)183
[50] S. Bhattacharjee, S. Sarkar and A. Bhattacharyya, Scalar perturbations of black holes in Jackiw-Teitelboim gravity, Phys. Rev. D103 (2021) 024008 [arXiv:2011.08179] [INSPIRE].
[51] Cadoni, M.; Mignemi, S., Classical and semiclassical properties of extremal black holes with dilaton and modulus fields, Nucl. Phys. B, 427, 669 (1994) · Zbl 1049.83532 · doi:10.1016/0550-3213(94)90644-0
[52] J. Kettner, G. Kunstatter and A.J.M. Medved, Quasinormal modes for single horizon black holes in generic 2-D dilaton gravity, Class. Quant. Grav.21 (2004) 5317 [gr-qc/0408042] [INSPIRE]. · Zbl 1067.83536
[53] Lopez-Ortega, A., Entropy spectra of single horizon black holes in two dimensions, Int. J. Mod. Phys. D, 20, 2525 (2011) · Zbl 1263.83119 · doi:10.1142/S0218271811020524
[54] Cordero, R.; Lopez-Ortega, A.; Vega-Acevedo, I., Quasinormal frequencies of asymptotically anti-de Sitter black holes in two dimensions, Gen. Rel. Grav., 44, 917 (2012) · Zbl 1238.83045 · doi:10.1007/s10714-011-1316-1
[55] M.I. Hernandez-Velazquez and A. Lopez-Ortega, Quasinormal Frequencies of a Two-Dimensional Asymptotically Anti-de Sitter Black Hole of the Dilaton Gravity Theory, Front. Astron. Space Sci.8 (2021) 713422 [arXiv:2108.09559] [INSPIRE].
[56] Achucarro, A.; Ortiz, ME, Relating black holes in two-dimensions and three-dimensions, Phys. Rev. D, 48, 3600 (1993) · doi:10.1103/PhysRevD.48.3600
[57] G. Kunstatter, R. Petryk and S. Shelemy, Hamiltonian thermodynamics of black holes in generic 2-D dilaton gravity, Phys. Rev. D57 (1998) 3537 [gr-qc/9709043] [INSPIRE].
[58] V. Cardoso and J.P.S. Lemos, Scalar, electromagnetic and Weyl perturbations of BTZ black holes: Quasinormal modes, Phys. Rev. D63 (2001) 124015 [gr-qc/0101052] [INSPIRE].
[59] B.F. Schutz and C.M. Will, Black hole normal modes: a semianalytic approach, Astrophys. J. Lett.291 (1985) L33 [INSPIRE].
[60] H.-P. Nollert, Quasinormal modes of Schwarzschild black holes: The determination of quasinormal frequencies with very large imaginary parts, Phys. Rev. D47 (1993) 5253 [INSPIRE].
[61] L. Motl, An Analytical computation of asymptotic Schwarzschild quasinormal frequencies, Adv. Theor. Math. Phys.6 (2003) 1135 [gr-qc/0212096] [INSPIRE].
[62] S. Hod and U. Keshet, Intermediate asymptotics of the Kerr quasinormal spectrum, Class. Quant. Grav.22 (2005) L71 [gr-qc/0505112] [INSPIRE]. · Zbl 1129.83328
[63] U. Keshet and S. Hod, Analytic study of rotating black-hole quasinormal modes, Phys. Rev. D76 (2007) 061501 [arXiv:0705.1179] [INSPIRE].
[64] G. Panotopoulos and A. Rincón, Quasinormal spectra of scale-dependent Schwarzschild-de Sitter black holes, Phys. Dark Univ.31 (2021) 100743 [arXiv:2011.02860] [INSPIRE].
[65] D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett.88 (2002) 151301 [hep-th/0112055] [INSPIRE].
[66] A. Rincón and G. Panotopoulos, Quasinormal modes of scale dependent black holes in (1 + 2)-dimensional Einstein-power-Maxwell theory, Phys. Rev. D97 (2018) 024027 [arXiv:1801.03248] [INSPIRE].
[67] Casadio, R.; Giugno, A.; Micu, O.; Orlandi, A., Thermal BEC black holes, Entropy, 17, 6893 (2015) · Zbl 1338.83101 · doi:10.3390/e17106893
[68] Casadio, R.; Giugno, A.; Giusti, A., Matter and gravitons in the gravitational collapse, Phys. Lett. B, 763, 337 (2016) · Zbl 1370.83042 · doi:10.1016/j.physletb.2016.10.058
[69] Casadio, R., A quantum bound on the compactness, Eur. Phys. J. C, 82, 10 (2022) · doi:10.1140/epjc/s10052-021-09980-2
[70] M. Cadoni, R. Casadio, A. Giusti and M. Tuveri, Emergence of a Dark Force in Corpuscular Gravity, Phys. Rev. D97 (2018) 044047 [arXiv:1801.10374] [INSPIRE].
[71] M. Cadoni and M. Cavaglia, Open strings, 2-D gravity and AdS/CFT correspondence, Phys. Rev. D63 (2001) 084024 [hep-th/0008084] [INSPIRE].
[72] Cadoni, M.; Cavaglia, M., Two-dimensional black holes as open strings: A New realization of the AdS/CFT duality, Phys. Lett. B, 499, 315 (2001) · Zbl 0972.83054 · doi:10.1016/S0370-2693(00)01398-8
[73] G. Dvali and C. Gomez, Self-Completeness of Einstein Gravity, arXiv:1005.3497 [INSPIRE].
[74] G. Gour, Schwarzschild black hole as a grand canonical ensemble, Phys. Rev. D61 (2000) 021501 [gr-qc/9907066] [INSPIRE].
[75] S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys.87 (1983) 577 [INSPIRE].
[76] Mann, RB; Solodukhin, SN, Universality of quantum entropy for extreme black holes, Nucl. Phys. B, 523, 293 (1998) · Zbl 0953.83015 · doi:10.1016/S0550-3213(98)00094-7
[77] Akbar, M.; Saifullah, K., Quantum corrections to the entropy of charged rotating black holes, Eur. Phys. J. C, 67, 205 (2010) · doi:10.1140/epjc/s10052-010-1279-5
[78] S. Carlip, Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav.17 (2000) 4175 [gr-qc/0005017] [INSPIRE]. · Zbl 0970.83026
[79] Mukherji, S.; Pal, SS, Logarithmic corrections to black hole entropy and AdS/CFT correspondence, JHEP, 05, 026 (2002) · doi:10.1088/1126-6708/2002/05/026
[80] A.J.M. Medved, A Comment on black hole entropy or does nature abhor a logarithm?, Class. Quant. Grav.22 (2005) 133 [gr-qc/0406044] [INSPIRE]. · Zbl 1060.83522
[81] M. Domagala and J. Lewandowski, Black hole entropy from quantum geometry, Class. Quant. Grav.21 (2004) 5233 [gr-qc/0407051] [INSPIRE]. · Zbl 1062.83053
[82] D. Grumiller, Logarithmic corrections to the entropy of the exact string black hole, in 8th International Conference on Path Integrals from Quantum Information to Cosmology, (2005) [hep-th/0506175] [INSPIRE].
[83] Fursaev, DV, Temperature and entropy of a quantum black hole and conformal anomaly, Phys. Rev. D, 51, 5352 (1995) · doi:10.1103/PhysRevD.51.R5352
[84] M.R. Setare, Space noncommutativity corrections to the Cardy-Verlinde formula, Int. J. Mod. Phys. A21 (2006) 3007 [gr-qc/0604119] [INSPIRE].
[85] Ghosh, A.; Mitra, P., Entropy in dilatonic black hole background, Phys. Rev. Lett., 73, 2521 (1994) · Zbl 1020.83603 · doi:10.1103/PhysRevLett.73.2521
[86] R.K. Kaul and P. Majumdar, Logarithmic correction to the Bekenstein-Hawking entropy, Phys. Rev. Lett.84 (2000) 5255 [gr-qc/0002040] [INSPIRE].
[87] Cadoni, M., Entanglement entropy of two-dimensional Anti-de Sitter black holes, Phys. Lett. B, 653, 434 (2007) · Zbl 1246.83100 · doi:10.1016/j.physletb.2007.08.026
[88] Maldacena, JM, Eternal black holes in anti-de Sitter, JHEP, 04, 021 (2003) · doi:10.1088/1126-6708/2003/04/021
[89] Strominger, A., AdS_2quantum gravity and string theory, JHEP, 01, 007 (1999) · Zbl 0965.81097 · doi:10.1088/1126-6708/1999/01/007
[90] Navarro-Salas, J.; Navarro, P., AdS_2/CFT_1correspondence and near extremal black hole entropy, Nucl. Phys. B, 579, 250 (2000) · Zbl 0992.83070 · doi:10.1016/S0550-3213(00)00165-6
[91] Cadoni, M.; Mignemi, S., Asymptotic symmetries of AdS_2and conformal group in d = 1, Nucl. Phys. B, 557, 165 (1999) · Zbl 0951.83026 · doi:10.1016/S0550-3213(99)00398-3
[92] Cadoni, M.; Mignemi, S., Symmetry breaking, central charges and the AdS_2/CFT_1correspondence, Phys. Lett. B, 490, 131 (2000) · doi:10.1016/S0370-2693(00)00982-5
[93] Cadoni, M., Horizons and the quantum and thermal harmonic oscillator, Mod. Phys. Lett. A, 20, 1503 (2005) · Zbl 1114.83310 · doi:10.1142/S0217732305017603
[94] M. Cadoni, P. Carta, D. Klemm and S. Mignemi, AdS_2gravity as conformally invariant mechanical system, Phys. Rev. D63 (2001) 125021 [hep-th/0009185] [INSPIRE].
[95] V. de Alfaro, S. Fubini and G. Furlan, Conformal Invariance in Quantum Mechanics, Nuovo Cim. A34 (1976) 569 [INSPIRE].
[96] G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D62 (2000) 024027 [hep-th/9909056] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.