×

Quasinormal modes, echoes and the causal structure of the Green’s function. (English) Zbl 1542.83012

Summary: Quasinormal modes describe the return to equilibrium of a perturbed system, in particular the ringdown phase of a black hole merger. But as globally-defined quantities, the quasinormal spectrum can be highly sensitive to global structure, including distant small perturbations to the potential. In what sense are quasinormal modes a property of the resulting black hole? We explore this question for the linearized perturbation equation with two potentials having disjoint bounded support. We give a composition law for the Wronskian that determines the quasinormal frequencies of the combined system. We show that over short time scales the evolution is governed by the quasinormal frequencies of the individual potentials, while the sensitivity to global structure can be understood in terms of echoes. We introduce an echo expansion of the Green’s function and show that, as expected on general grounds, at any finite time causality limits the number of echoes that can contribute. We illustrate our results with the soluble example of a pair of \(\delta \)-function potentials. We explicate the causal structure of the Green’s function, demonstrating under what conditions two very different quasinormal spectra give rise to very similar ringdown waveforms.

MSC:

83C57 Black holes
83C35 Gravitational waves

References:

[1] LIGO Scientific, Virgo collaboration, 2016 Binary black hole mergers in the first advanced LIGO observing run, https://doi.org/10.1103/PhysRevX.6.041015 Phys. Rev. X 6 041015 [1606.04856] · doi:10.1103/PhysRevX.6.041015
[2] K.D. Kokkotas and B.G. Schmidt, 1999 Quasinormal modes of stars and black holes, https://doi.org/10.12942/lrr-1999-2 Living Rev. Rel.2 2 [gr-qc/9909058] · Zbl 0984.83002 · doi:10.12942/lrr-1999-2
[3] E. Berti, V. Cardoso and A.O. Starinets, 2009 Quasinormal modes of black holes and black branes, https://doi.org/10.1088/0264-9381/26/16/163001 Class. Quant. Grav.26 163001 [0905.2975] · Zbl 1173.83001 · doi:10.1088/0264-9381/26/16/163001
[4] T. Regge and J.A. Wheeler, 1957 Stability of a Schwarzschild singularity, https://doi.org/10.1103/PhysRev.108.1063 Phys. Rev.1081063 · Zbl 0079.41902 · doi:10.1103/PhysRev.108.1063
[5] F.J. Zerilli, 1970 Effective potential for even parity Regge-Wheeler gravitational perturbation equations, https://doi.org/10.1103/PhysRevLett.24.737 Phys. Rev. Lett.24 737 · doi:10.1103/PhysRevLett.24.737
[6] S.A. Teukolsky, 1973 Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, https://doi.org/10.1086/152444 Astrophys. J.185 635 · doi:10.1086/152444
[7] E. Berti and V. Cardoso, 2006 Quasinormal ringing of Kerr black holes. I. The excitation factors, https://doi.org/10.1103/PhysRevD.74.104020 Phys. Rev. D 74 104020 [gr-qc/0605118] · doi:10.1103/PhysRevD.74.104020
[8] Z. Zhang, E. Berti and V. Cardoso, 2013 Quasinormal ringing of Kerr black holes. II. Excitation by particles falling radially with arbitrary energy, https://doi.org/10.1103/PhysRevD.88.044018 Phys. Rev. D 88 044018 [1305.4306] · doi:10.1103/PhysRevD.88.044018
[9] H.-P. Nollert, 1996 About the significance of quasinormal modes of black holes, https://doi.org/10.1103/PhysRevD.53.4397 Phys. Rev. D 53 4397 [gr-qc/9602032] · doi:10.1103/PhysRevD.53.4397
[10] H.-P. Nollert and R.H. Price, 1999 Quantifying excitations of quasinormal mode systems, https://doi.org/10.1063/1.532698 J. Math. Phys.40 980 [gr-qc/9810074] · Zbl 0946.83016 · doi:10.1063/1.532698
[11] E. Barausse, V. Cardoso and P. Pani, 2014 Can environmental effects spoil precision gravitational-wave astrophysics?, https://doi.org/10.1103/PhysRevD.89.104059 Phys. Rev. D 89 104059 [1404.7149] · doi:10.1103/PhysRevD.89.104059
[12] V. Cardoso, E. Franzin and P. Pani, 2016 Is the gravitational-wave ringdown a probe of the event horizon?, https://doi.org/10.1103/PhysRevLett.117.089902 Phys. Rev. Lett.116 171101 [Erratum ibid 117 (2016) 089902] [1602.07309] · doi:10.1103/PhysRevLett.117.089902
[13] V. Cardoso et al., 2016 Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale, https://doi.org/10.1103/PhysRevD.94.084031 Phys. Rev. D 94 084031 [1608.08637] · doi:10.1103/PhysRevD.94.084031
[14] J.T. Gálvez Ghersi, A.V. Frolov and D.A. Dobre, 2019 Echoes from the scattering of wavepackets on wormholes, https://doi.org/10.1088/1361-6382/ab23c8 Class. Quant. Grav.36 135006 [1901.06625] · Zbl 1477.83020 · doi:10.1088/1361-6382/ab23c8
[15] V. Cardoso and P. Pani, 2019 Testing the nature of dark compact objects: a status report, https://doi.org/10.1007/s41114-019-0020-4 Living Rev. Rel.22 4 [1904.05363] · doi:10.1007/s41114-019-0020-4
[16] Q. Wang, N. Oshita and N. Afshordi, Echoes from quantum black holes, [1905.00446]
[17] R.H. Price and G. Khanna, 2017 Gravitational wave sources: reflections and echoes, https://doi.org/10.1088/1361-6382/aa8f29 Class. Quant. Grav.34 225005 [1702.04833] · Zbl 1380.83075 · doi:10.1088/1361-6382/aa8f29
[18] Z. Mark, A. Zimmerman, S.M. Du and Y. Chen, 2017 A recipe for echoes from exotic compact objects, https://doi.org/10.1103/PhysRevD.96.084002 Phys. Rev. D 96 084002 [1706.06155] · doi:10.1103/PhysRevD.96.084002
[19] P. Bueno, P.A. Cano, F. Goelen, T. Hertog and B. Vercnocke, 2018 Echoes of Kerr-like wormholes, https://doi.org/10.1103/PhysRevD.97.024040 Phys. Rev. D 97 024040 [1711.00391] · doi:10.1103/PhysRevD.97.024040
[20] E.W. Leaver, 1986 Spectral decomposition of the perturbation response of the Schwarzschild geometry, https://doi.org/10.1103/PhysRevD.34.384 Phys. Rev. D 34 384 · Zbl 1222.83053 · doi:10.1103/PhysRevD.34.384
[21] H.P. Nollert and B.G. Schmidt, 1992 Quasinormal modes of Schwarzschild black holes: defined and calculated via Laplace transformation, Phys. Rev. D 45 2617 · Zbl 1232.83054 · doi:10.1103/PhysRevD.45.2617
[22] N. Andersson, 1995 Excitation of Schwarzschild black hole quasinormal modes, https://doi.org/10.1103/PhysRevD.51.353 Phys. Rev. D 51 353 · doi:10.1103/PhysRevD.51.353
[23] N. Szpak, Quasinormal mode expansion and the exact solution of the Cauchy problem for wave equations, [gr-qc/0411050] · Zbl 0990.35107
[24] M.R. Correia and V. Cardoso, 2018 Characterization of echoes: a Dyson-series representation of individual pulses, https://doi.org/10.1103/PhysRevD.97.084030 Phys. Rev. D 97 084030 [1802.07735] · doi:10.1103/PhysRevD.97.084030
[25] Y.-X. Huang, J.-C. Xu and S.-Y. Zhou, The Fredholm approach to charactize gravitational wave echoes, [1908.00189]
[26] V. Cardoso, V.F. Foit and M. Kleban, 2019 Gravitational wave echoes from black hole area quantization J. Cosmol. Astropart. Phys.2019 08 006 [1902.10164] · Zbl 1541.83039
[27] Z.-P. Li and Y.-S. Piao, 2019 Mixing of gravitational wave echoes, https://doi.org/10.1103/PhysRevD.100.044023 Phys. Rev. D 100 044023 [1904.05652] · doi:10.1103/PhysRevD.100.044023
[28] L. Buoninfante, A. Mazumdar and J. Peng, 2019 Nonlocality amplifies echoes, https://doi.org/10.1103/PhysRevD.100.104059 Phys. Rev. D 100 104059 [1906.03624] · doi:10.1103/PhysRevD.100.104059
[29] M. Mirbabayi, The quasinormal modes of quasinormal modes, [1807.04843] · Zbl 1475.83025
[30] E.S.C. Ching, P.T. Leung, W.M. Suen and K. Young, 1995 Late time tail of wave propagation on curved space-time, https://doi.org/10.1103/PhysRevLett.74.2414 Phys. Rev. Lett.74 2414 [gr-qc/9410044] · doi:10.1103/PhysRevLett.74.2414
[31] E.S.C. Ching, P.T. Leung, W.M. Suen and K. Young, 1995 Wave propagation in gravitational systems: late time behavior, https://doi.org/10.1103/PhysRevD.52.2118 Phys. Rev. D 52 2118 [gr-qc/9507035] · doi:10.1103/PhysRevD.52.2118
[32] D. Skinner, Green’s functions for ODEs, http://www.damtp.cam.ac.uk/user/dbs26/1Bmethods.html
[33] E.S.C. Ching, P.T. Leung, W.M. Suen and K. Young, 1996 Wave propagation in gravitational systems: Completeness of quasinormal modes, https://doi.org/10.1103/PhysRevD.54.3778 Phys. Rev. D 54 3778 [gr-qc/9507034] · doi:10.1103/PhysRevD.54.3778
[34] E.S.C. Ching et al., 1998 Quasinormal-mode expansion for waves in open systems, https://doi.org/10.1103/RevModPhys.70.1545 Rev. Mod. Phys.70 1545 [gr-qc/9904017] · doi:10.1103/RevModPhys.70.1545
[35] G.T. Horowitz and V.E. Hubeny, 2000 Quasinormal modes of AdS black holes and the approach to thermal equilibrium, https://doi.org/10.1103/PhysRevD.62.024027 Phys. Rev. D 62 024027 [hep-th/9909056] · doi:10.1103/PhysRevD.62.024027
[36] O.J. Tattersall, P.G. Ferreira and M. Lagos, 2018 General theories of linear gravitational perturbations to a Schwarzschild black hole, https://doi.org/10.1103/PhysRevD.97.044021 Phys. Rev. D 97 044021 [1711.01992] · doi:10.1103/PhysRevD.97.044021
[37] G. Franciolini et al., 2019 Effective field theory of black hole quasinormal modes in scalar-tensor theories J. High Energy Phys. JHEP02(2019)127 [1810.07706] · Zbl 1411.83084 · doi:10.1007/JHEP02(2019)127
[38] R. McManus et al., 2019 Parametrized black hole quasinormal ringdown. II. Coupled equations and quadratic corrections for nonrotating black holes, https://doi.org/10.1103/PhysRevD.100.044061 Phys. Rev. D 100 044061 [1906.05155] · doi:10.1103/PhysRevD.100.044061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.