×

The general relativistic constraint equations. (English) Zbl 1514.83005

Summary: We present the state-of-the-art concerning the relativistic constraints, which describe the geometry of hypersurfaces in a spacetime subject to the Einstein field equations. We review a variety of solvability results, the construction of several classes of solutions of special relevance and place results in the broader context of mathematical general relativity. Apart from providing an overview of the subject, this paper includes a selection of open questions, as well as a few complements to some significant contributions in the literature.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
70H45 Constrained dynamics, Dirac’s theory of constraints
58J47 Propagation of singularities; initial value problems on manifolds
65E10 Numerical methods in conformal mappings
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58H15 Deformations of general structures on manifolds

References:

[1] Abate, M.; Tovena, F., Curves and surfaces. Unitext (2012), Milan: Springer, Milan · Zbl 1238.53001 · doi:10.1007/978-88-470-1941-6
[2] Aceña, AE, Convergent null data expansions at space-like infinity of stationary vacuum solutions, Ann Henri Poincaré, 10, 275-337 (2009) · Zbl 1208.83020 · doi:10.1007/s00023-009-0406-z
[3] Albanese, G.; Rigoli, M., Lichnerowicz-type equations on complete manifolds, Adv Nonlinear Anal, 5, 223-250 (2016) · Zbl 1349.35372 · doi:10.1515/anona-2015-0106
[4] Albanese, G.; Rigoli, M., Lichnerowicz-type equations with sign-changing nonlinearities on complete manifolds with boundary, J Differ Equations, 263, 7475-7495 (2017) · Zbl 1377.58012 · doi:10.1016/j.jde.2017.08.010
[5] Allen, PT; Clausen, A.; Isenberg, J., Near-constant mean curvature solutions of the Einstein constraint equations with non-negative Yamabe metrics, Class Quantum Grav, 25, 075009 (2008) · Zbl 1138.83004 · doi:10.1088/0264-9381/25/7/075009
[6] Ambrosio, L., Transport equation and Cauchy problem for \(BV\) vector fields, Invent Math, 158, 227-260 (2004) · Zbl 1075.35087 · doi:10.1007/s00222-004-0367-2
[7] Ambrosio, L.; Trevisan, D., Lecture notes on the DiPerna-Lions theory in abstract measure spaces, Ann Fac Sci Toulouse Math, 26, 729-766 (2017) · Zbl 1402.35003 · doi:10.5802/afst.1551
[8] Ambrosio L, Carlotto A, Massaccesi A (2018) Lectures on elliptic partial differential equations, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], vol 18. Edizioni della Normale, Pisa. doi:10.1007/978-88-7642-651-3 · Zbl 1416.35001
[9] Ambrozio, L., On perturbations of the Schwarzschild anti-de Sitter spaces of positive mass, Commun Math Phys, 337, 767-783 (2015) · Zbl 1317.53096 · doi:10.1007/s00220-015-2360-6
[10] Ambrozio, L., On static three-manifolds with positive scalar curvature, J Differ Geom, 107, 1-45 (2017) · Zbl 1385.53020 · doi:10.4310/jdg/1505268028
[11] An Z (2020) On mass-minimizing extension of Bartnik boundary data. arXiv e-prints arXiv:2007.05452
[12] Anderson M (2018) On the conformal method for the Einstein constraint equations. arXiv e-prints arXiv:1812.06320
[13] Anderson, MT; Chruściel, PT, Asymptotically simple solutions of the vacuum Einstein equations in even dimensions, Commun Math Phys, 260, 557-577 (2005) · Zbl 1094.83002 · doi:10.1007/s00220-005-1424-4
[14] Anderson, MT; Jauregui, JL, Embeddings, immersions and the Bartnik quasi-local mass conjectures, Ann Henri Poincaré, 20, 1651-1698 (2019) · Zbl 1416.83027 · doi:10.1007/s00023-019-00786-3
[15] Andersson, L.; Chruściel, PT, Solutions of the constraint equations in general relativity satisfying “hyperboloidal boundary conditions”, Diss Math (Rozprawy Mat), 355, 100 (1996) · Zbl 0873.35101
[16] Andersson, L.; Dahl, M., Scalar curvature rigidity for asymptotically locally hyperbolic manifolds, Ann Glob Anal Geom, 16, 1-27 (1998) · Zbl 0946.53021 · doi:10.1023/A:1006547905892
[17] Andersson, L.; Chruściel, PT; Friedrich, H., On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations, Commun Math Phys, 149, 587-612 (1992) · Zbl 0764.53027 · doi:10.1007/bf02096944
[18] Andersson, L.; Cai, M.; Galloway, GJ, Rigidity and positivity of mass for asymptotically hyperbolic manifolds, Ann Henri Poincaré, 9, 1-33 (2008) · Zbl 1134.81037 · doi:10.1007/s00023-007-0348-2
[19] Andersson, L.; Bäckdahl, T.; Joudioux, J., Hertz potentials and asymptotic properties of massless fields, Commun Math Phys, 331, 755-803 (2014) · Zbl 1298.83005 · doi:10.1007/s00220-014-2078-x
[20] Arms, JM; Marsden, JE, The absence of Killing fields is necessary for linearization stability of Einstein’s equations, Indiana Univ Math J, 28, 119-125 (1979) · Zbl 0405.53046 · doi:10.1512/iumj.1979.28.28008
[21] Arms, JM; Marsden, JE; Moncrief, V., The structure of the space of solutions of Einstein’s equations. II. Several Killing fields and the Einstein-Yang-Mills equations, Ann Phys, 144, 81-106 (1982) · Zbl 0499.53052 · doi:10.1016/0003-4916(82)90105-1
[22] Arnowitt, R.; Deser, S.; Misner, CW, Dynamical structure and definition of energy in general relativity, Phys Rev, 116, 1322-1330 (1959) · Zbl 0092.20704 · doi:10.1103/physrev.116.1322
[23] Arnowitt, R.; Deser, S.; Misner, CW, Canonical variables for general relativity, Phys Rev, 117, 1595-1602 (1960) · Zbl 0091.21203 · doi:10.1103/physrev.117.1595
[24] Arnowitt, R.; Deser, S.; Misner, CW, Coordinate invariance and energy expressions in general relativity, Phys Rev, 122, 997-1006 (1961) · Zbl 0094.23003 · doi:10.1103/physrev.122.997
[25] Arnowitt, R.; Deser, S.; Misner, CW; Witten, L., The dynamics of general relativity, Gravitation: an introduction to current research, 227-265 (1962), New York: Wiley, New York · Zbl 0115.43103
[26] Aronszajn, N., A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J Math Pures Appl, 36, 235-249 (1957) · Zbl 0084.30402
[27] Ashtekar, A.; Horowitz, GT, Energy-momentum of isolated systems cannot be null, Phys Lett A, 89, 181-184 (1982) · doi:10.1016/0375-9601(82)90203-1
[28] Aubin, T., Métriques riemanniennes et courbure, J Differ Geom, 4, 383-424 (1970) · Zbl 0212.54102 · doi:10.4310/jdg/1214429638
[29] Aubin, T., Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J Math Pures Appl, 55, 269-296 (1976) · Zbl 0336.53033
[30] Aubin, T., Some nonlinear problems in Riemannian geometry. Springer monographs in mathematics (1998), Berlin: Springer, Berlin · Zbl 0896.53003 · doi:10.1007/978-3-662-13006-3
[31] Bahouri, H.; Chemin, JY, Équations d’ondes quasilinéaires et estimations de Strichartz, Am J Math, 121, 1337-1377 (1999) · Zbl 0952.35073 · doi:10.1353/ajm.1999.0038
[32] Bamler R, Kleiner B (2017) Uniqueness and stability of Ricci flow through singularities. arXiv e-prints arXiv:1709.04122
[33] Bamler R, Kleiner B (2019) Ricci flow and contractibility of spaces of metrics. arXiv e-prints arXiv:1909.08710
[34] Bartnik, R., Existence of maximal surfaces in asymptotically flat spacetimes, Commun Math Phys, 94, 155-175 (1984) · Zbl 0548.53054 · doi:10.1007/bf01209300
[35] Bartnik, R., The mass of an asymptotically flat manifold, Commun Pure Appl Math, 39, 661-693 (1986) · Zbl 0598.53045 · doi:10.1002/cpa.3160390505
[36] Bartnik, R., New definition of quasilocal mass, Phys Rev Lett, 62, 2346-2348 (1989) · doi:10.1103/physrevlett.62.2346
[37] Bartnik, R., Quasi-spherical metrics and prescribed scalar curvature, J Differ Geom, 37, 31-71 (1993) · Zbl 0786.53019 · doi:10.4310/jdg/1214453422
[38] Bartnik, R., Energy in general relativity. Tsing Hua lectures on geometry & analysis (Hsinchu, 1990-1991), 5-27 (1997), Cambridge: International Press, Cambridge · Zbl 0884.53065
[39] Bartnik R (2002) Mass and 3-metrics of non-negative scalar curvature. In: Proceedings of the international congress of mathematicians, vol. II (Beijing, 2002). Higher Education Press, Beijing, pp 231-240 · Zbl 1009.53055
[40] Bartnik, R., Phase space for the Einstein equations, Commun Anal Geom, 13, 845-885 (2005) · Zbl 1123.83006 · doi:10.4310/cag.2005.v13.n5.a1
[41] Bartnik, R.; Fodor, G., On the restricted validity of the thin sandwich conjecture, Phys Rev D, 48, 3596-3599 (1993) · doi:10.1103/physrevd.48.3596
[42] Bartnik R, Isenberg J (2004) The constraint equations. In: The Einstein equations and the large scale behavior of gravitational fields. Birkhäuser, Basel, pp 1-38. doi:10.1007/978-3-0348-7953-8_1 · Zbl 1073.83009
[43] Baumgarte, TW; Shapiro, SL, Numerical relativity. Solving Einstein’s equations on the computer (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1198.83001 · doi:10.1017/CBO9781139193344
[44] Baumgarte, TW; Ó Murchadha, N.; Pfeiffer, HP, Einstein constraints: uniqueness and nonuniqueness in the conformal thin sandwich approach, Phys Rev D, 75, 044009 (2007) · doi:10.1103/physrevd.75.044009
[45] Beig R (1997) TT-tensors and conformally flat structures on 3-manifolds. In: Mathematics of gravitation, Part I (Warsaw, 1996). Banach Center Publ., vol 41. Polish Acad. Sci. Inst. Math., Warsaw, pp 109-118. doi:10.4064/-41-1-109-118 · Zbl 0894.53044
[46] Beig, R.; Chruściel, PT, Killing vectors in asymptotically flat space-times. I. Asymptotically translational Killing vectors and the rigid positive energy theorem, J Math Phys, 37, 1939-1961 (1996) · Zbl 0864.53063 · doi:10.1063/1.531497
[47] Beig, R.; Chruściel, PT, Shielding linearized gravity, Phys Rev D, 95, 064063 (2017) · doi:10.1103/physrevd.95.064063
[48] Beig, R.; Chruściel, PT, On linearised vacuum constraint equations on Einstein manifolds, Class Quantum Grav (2020) · Zbl 1479.83196 · doi:10.1088/1361-6382/ab81cc
[49] Beig, R.; Chruściel, PT; Schoen, R., KIDs are non-generic, Ann Henri Poincaré, 6, 155-194 (2005) · Zbl 1145.83306 · doi:10.1007/s00023-005-0202-3
[50] Bérard-Bergery, L., Scalar curvature and isometry group, Spectra of Riemannian manifolds, 9-28 (1983), Tokyo: Kaigai Publications, Tokyo
[51] Besse, AL, Einstein manifolds. Classics in mathematics, reprint of the 1987 edition (2008), Berlin: Springer, Berlin · doi:10.1007/978-3-540-74311-8
[52] Bessières, L.; Besson, G.; Maillot, S., Ricci flow on open 3-manifolds and positive scalar curvature, Geom Topol, 15, 927-975 (2011) · Zbl 1237.53064 · doi:10.2140/gt.2011.15.927
[53] Bieri, L., An extension of the stability theorem of the Minkowski space in general relativity, J Differ Geom, 86, 17-70 (2010) · Zbl 1213.83025 · doi:10.4310/jdg/1299766683
[54] Bizoń, P.; Pletka, S.; Simon, W., Initial data for rotating cosmologies, Class Quantum Grav, 32, 175015 (2015) · Zbl 1323.83032 · doi:10.1088/0264-9381/32/17/175015
[55] Bland, J.; Kalka, M., Negative scalar curvature metrics on noncompact manifolds, Trans Amer Math Soc, 316, 433-446 (1989) · Zbl 0694.53041 · doi:10.1090/s0002-9947-1989-0987159-2
[56] Borghini, S.; Mazzieri, L., On the mass of static metrics with positive cosmological constant: I, Class Quantum Grav, 35, 125001 (2018) · Zbl 1391.83037 · doi:10.1088/1361-6382/aac081
[57] Botvinnik, B.; Gilkey, PB, Metrics of positive scalar curvature on spherical space forms, Can J Math, 48, 64-80 (1996) · Zbl 0859.58026 · doi:10.4153/cjm-1996-003-0
[58] Botvinnik, B.; Hanke, B.; Schick, T.; Walsh, M., Homotopy groups of the moduli space of metrics of positive scalar curvature, Geom Topol, 14, 2047-2076 (2010) · Zbl 1201.58006 · doi:10.2140/gt.2010.14.2047
[59] Boucher, W.; Gibbons, GW; Horowitz, GT, Uniqueness theorem for anti-de Sitter spacetime, Phys Rev D, 30, 2447-2451 (1984) · doi:10.1103/physrevd.30.2447
[60] Bourguignon, JP; Ebin, DG; Marsden, JE, Sur le noyau des opérateurs pseudo-différentiels à symbole surjectif et non injectif, C R Acad Sci Paris Sér A-B, 282, A867-A870 (1976) · Zbl 0323.58020
[61] Bray, HL, Proof of the Riemannian Penrose inequality using the positive mass theorem, J Differ Geom, 59, 177-267 (2001) · Zbl 1039.53034 · doi:10.4310/jdg/1090349428
[62] Brendle, S.; Chen, SYS, An existence theorem for the Yamabe problem on manifolds with boundary, J Eur Math Soc, 16, 991-1016 (2014) · Zbl 1293.53047 · doi:10.4171/jems/453
[63] Brendle, S.; Marques, FC, Scalar curvature rigidity of geodesic balls in \(S^n\), J Differ Geom, 88, 379-394 (2011) · Zbl 1237.53037 · doi:10.4310/jdg/1321366355
[64] Brendle, S.; Marques, FC; Neves, A., Deformations of the hemisphere that increase scalar curvature, Invent Math, 185, 175-197 (2011) · Zbl 1227.53048 · doi:10.1007/s00222-010-0305-4
[65] Brill, D.; Cantor, M., The Laplacian on asymptotically flat manifolds and the specification of scalar curvature, Compos Math, 43, 317-330 (1981) · Zbl 0471.53031
[66] Bunting, GL; Masood-ul Alam, AKM, Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time, Gen Relativ Gravit, 19, 147-154 (1987) · Zbl 0615.53055 · doi:10.1007/bf00770326
[67] Cabrera Pacheco, AJ; Miao, P., Higher dimensional black hole initial data with prescribed boundary metric, Math Res Lett, 25, 937-956 (2018) · Zbl 1401.83014 · doi:10.4310/mrl.2018.v25.n3.a10
[68] Cabrera Pacheco, AJ; Cederbaum, C.; McCormick, S.; Miao, P., Asymptotically flat extensions of CMC Bartnik data, Class Quantum Grav, 34, 105001 (2017) · Zbl 1369.83019 · doi:10.1088/1361-6382/aa6921
[69] Cabrera Pacheco, AJ; Cederbaum, C.; McCormick, S., Asymptotically hyperbolic extensions and an analogue of the Bartnik mass, J Geom Phys, 132, 338-357 (2018) · Zbl 1396.53057 · doi:10.1016/j.geomphys.2018.06.010
[70] Caffarelli, LA; Gidas, B.; Spruck, J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun Pure Appl Math, 42, 271-297 (1989) · Zbl 0702.35085 · doi:10.1002/cpa.3160420304
[71] Cantor, M., The existence of non-trivial asymptotically flat initial data for vacuum spacetimes, Commun Math Phys, 57, 83-96 (1977) · Zbl 0404.53025 · doi:10.1007/bf01651695
[72] Cantor, M., A necessary and sufficient condition for York data to specify an asymptotically flat spacetime, J Math Phys, 20, 1741-1744 (1979) · Zbl 0427.35072 · doi:10.1063/1.524259
[73] Carlotto, A., A survey on positive scalar curvature metrics, Boll Unione Mat Ital (2021) · Zbl 1465.53003 · doi:10.1007/s40574-020-00228-7
[74] Carlotto A, Li C (2019) Constrained deformations of positive scalar curvature metrics. arXiv e-prints arXiv:1903.11772
[75] Carlotto, A.; Schoen, R., Localizing solutions of the Einstein constraint equations, Invent Math, 205, 559-615 (2016) · Zbl 1353.83010 · doi:10.1007/s00222-015-0642-4
[76] Carlotto, A.; Chodosh, O.; Rubinstein, YA, Slowly converging Yamabe flows, Geom Topol, 19, 1523-1568 (2015) · Zbl 1326.53089 · doi:10.2140/gt.2015.19.1523
[77] Carlotto, A.; Chodosh, O.; Eichmair, M., Effective versions of the positive mass theorem, Invent Math, 206, 975-1016 (2016) · Zbl 1354.53071 · doi:10.1007/s00222-016-0667-3
[78] Carr, R., Construction of manifolds of positive scalar curvature, Trans Amer Math Soc, 307, 63-74 (1988) · Zbl 0654.53049 · doi:10.1090/s0002-9947-1988-0936805-7
[79] Cerf, J., Sur les difféomorphismes de la sphère de dimension trois \((\Gamma_4=0)\). Lecture notes in mathematics (1968), Berlin: Springer, Berlin · Zbl 0164.24502 · doi:10.1007/bfb0060395
[80] Chau A, Martens A (2020) Exterior Schwarzschild initial data for degenerate apparent horizons. arXiv e-prints arXiv:2004.09060
[81] Chen, PN; Wang, MT; Cao, HD; Schoen, R.; Yau, ST, Rigidity and minimizing properties of quasi-local mass, Surveys in differential geometry 2014. Regularity and evolution of nonlinear equations. Surveys in differential geometry, 49-61 (2015), Somerville: International Press, Somerville · Zbl 1333.83033
[82] Chodosh, O., Large isoperimetric regions in asymptotically hyperbolic manifolds, Commun Math Phys, 343, 393-443 (2016) · Zbl 1344.53048 · doi:10.1007/s00220-015-2457-y
[83] Chodosh O, Li C (2019) Generalized soap bubbles and the topology of manifolds with positive scalar curvature. arXiv e-prints arXiv:2008.11888
[84] Chodosh O, Eichmair M, Shi Y, Yu H (2016) Isoperimetry, scalar curvature and mass in asymptotically flat Riemannian 3-manifolds. arXiv e-prints arXiv:1606.04626
[85] Choquet-Bruhat, Y., Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math, 88, 141-225 (1952) · Zbl 0049.19201 · doi:10.1007/bf02392131
[86] Choquet-Bruhat, Y., Solution des contraintes pour les équations d’Einstein sur une variété asymptotiquement euclidienne non maximale, C R Acad Sci Paris Sér I Math, 317, 109-114 (1993) · Zbl 0783.53047
[87] Choquet-Bruhat, Y., Einstein constraints on compact \(n\)-dimensional manifolds, Class Quantum Grav, 21, S127-S151 (2004) · Zbl 1040.83004 · doi:10.1088/0264-9381/21/3/009
[88] Choquet-Bruhat, Y., General relativity and the Einstein equations. Oxford mathematical monographs (2009), Oxford: Oxford University Press, Oxford · Zbl 1157.83002
[89] Choquet-Bruhat, Y.; Bieri, L.; Yau, ST, Beginnings of the Cauchy problem for Einstein’s field equations, Surveys in differential geometry 2015. One hundred years of general relativity. Surv. Differ. Geom., 1-16 (2015), Boston: International Press, Boston · Zbl 1339.83006 · doi:10.4310/sdg.2015.v20.n1.a1
[90] Choquet-Bruhat, Y.; Christodoulou, D., Elliptic systems in \(H_{s,\delta }\) spaces on manifolds which are Euclidean at infinity, Acta Math, 146, 129-150 (1981) · Zbl 0484.58028 · doi:10.1007/bf02392460
[91] Choquet-Bruhat, Y.; Deser, S., Stabilité initiale de l’espace temps de Minkowski, C R Acad Sci Paris Sér A-B, 275, A1019-A1021 (1972)
[92] Choquet-Bruhat, Y.; Deser, S., On the stability of flat space, Ann Phys, 81, 165-178 (1973) · Zbl 0265.35059 · doi:10.1016/0003-4916(73)90484-3
[93] Choquet-Bruhat, Y.; Geroch, R., Global aspects of the Cauchy problem in general relativity, Commun Math Phys, 14, 329-335 (1969) · Zbl 0182.59901 · doi:10.1007/bf01645389
[94] Choquet-Bruhat Y, Moncrief V (2003) Nonlinear stability of an expanding universe with the \(S^1\) isometry group. In: Partial differential equations and mathematical physics (Tokyo, 2001). Progr. Nonlinear Differential Equations Appl., vol 52. Birkhäuser, Boston, Boston, MA, pp 57-71. doi:10.1007/978-1-4612-0011-6_5 · Zbl 1062.35149
[95] Choquet-Bruhat, Y.; York, JW Jr, The Cauchy problem, General relativity and gravitation, 99-172 (1980), New York: Plenum, New York
[96] Choquet-Bruhat, Y.; Fisher, A.; Marsden, J., Équations des contraintes sur une variété non compacte, C R Acad Sci Paris Sér A-B, 284, A975-A978 (1977) · Zbl 0364.58010
[97] Choquet-Bruhat, Y.; Isenberg, J.; York, JW Jr, Einstein constraints on asymptotically Euclidean manifolds, Phys Rev D, 61, 084034 (2000) · doi:10.1103/physrevd.61.084034
[98] Choquet-Bruhat, Y.; Isenberg, J.; Pollack, D., The Einstein-scalar field constraints on asymptotically Euclidean manifolds, Chin Ann Math Ser B, 27, 31-52 (2006) · Zbl 1112.83008 · doi:10.1007/s11401-005-0280-z
[99] Choquet-Bruhat, Y.; Isenberg, J.; Pollack, D., Applications of theorems of Jean Leray to the Einstein-scalar field equations, J Fixed Point Theory Appl, 1, 31-46 (2007) · Zbl 1169.83007 · doi:10.1007/s11784-006-0006-1
[100] Choquet-Bruhat, Y.; Isenberg, J.; Pollack, D., The constraint equations for the Einstein-scalar field system on compact manifolds, Class Quantum Grav, 24, 809-828 (2007) · Zbl 1111.83002 · doi:10.1088/0264-9381/24/4/004
[101] Christodoulou, D.; Ó Murchadha, N., The boost problem in general relativity, Commun Math Phys, 80, 271-300 (1981) · Zbl 0477.35081 · doi:10.1007/bf01213014
[102] Chruściel P (1986a) Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological properties and global structure of space-time (Erice, 1985). NATO ASI Series B, vol 138. Plenum, New York, pp 49-59 · Zbl 0687.53070
[103] Chruściel, PT, A remark on the positive-energy theorem, Class Quantum Grav, 3, L115-L121 (1986) · Zbl 0602.53056 · doi:10.1088/0264-9381/3/6/002
[104] Chruściel, PT, On space-times with \(U(1)\times U(1)\) symmetric compact Cauchy surfaces, Ann Phys, 202, 100-150 (1990) · Zbl 0727.53078 · doi:10.1016/0003-4916(90)90341-k
[105] Chruściel PT (2005) Recent results in mathematical relativity. In: General relativity and gravitation. World Scientific, Hackensack, pp 36-55. doi:10.1142/9789812701688_0005 · Zbl 1131.83004
[106] Chruściel PT (2019) Anti-gravity à la Carlotto-Schoen [after Carlotto and Schoen]. Astérisque 407:Exposé No. 1120, 1-25. doi:10.24033/ast.1058, s’eminaire Bourbaki. Vol. 2016/2017 · Zbl 1483.83003
[107] Chruściel, PT; Delay, E., Existence of non-trivial, vacuum, asymptotically simple spacetimes, Class Quantum Grav, 19, L71-L79 (2002) · Zbl 1005.83009 · doi:10.1088/0264-9381/19/9/101
[108] Chruściel PT, Delay E (2003) On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Mém. Soc. Math. France, vol 94. SMF. doi:10.24033/msmf.407 · Zbl 1058.83007
[109] Chruściel, PT; Delay, E., Manifold structures for sets of solutions of the general relativistic constraint equations, J Geom Phys, 51, 442-472 (2004) · Zbl 1073.83011 · doi:10.1016/j.geomphys.2003.12.002
[110] Chruściel, PT; Delay, E., Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature, Commun Anal Geom, 17, 343-381 (2009) · Zbl 1187.53075 · doi:10.4310/cag.2009.v17.n2.a8
[111] Chruściel, PT; Delay, E., Exotic hyperbolic gluings, J Differ Geom, 108, 243-293 (2018) · Zbl 1385.53062 · doi:10.4310/jdg/1518490818
[112] Chruściel PT, Delay E (2019) The hyperbolic positive energy theorem. arXiv e-prints arXiv:1901.05263
[113] Chruściel, PT; Gicquaud, R., Bifurcating solutions of the Lichnerowicz equation, Ann Henri Poincaré, 18, 643-679 (2017) · Zbl 1359.83007 · doi:10.1007/s00023-016-0501-x
[114] Chruściel, PT; Herzlich, M., The mass of asymptotically hyperbolic Riemannian manifolds, Pac J Math, 212, 231-264 (2003) · Zbl 1056.53025 · doi:10.2140/pjm.2003.212.231
[115] Chruściel, PT; Maerten, D., Killing vectors in asymptotically flat space-times. II. Asymptotically translational Killing vectors and the rigid positive energy theorem in higher dimensions, J Math Phys, 47, 022502 (2006) · Zbl 1111.83014 · doi:10.1063/1.2167809
[116] Chruściel, PT; Mazzeo, R., Initial data sets with ends of cylindrical type: I. The Lichnerowicz equation, Ann Henri Poincaré, 16, 1231-1266 (2015) · Zbl 1314.83011 · doi:10.1007/s00023-014-0339-z
[117] Chruściel, PT; Jezierski, J.; Łȩski, S., The Trautman-Bondi mass of hyperboloidal initial data sets, Adv Theor Math Phys, 8, 83-139 (2004) · Zbl 1086.81066 · doi:10.4310/atmp.2004.v8.n1.a2
[118] Chruściel, PT; Isenberg, J.; Pollack, D., Initial data engineering, Commun Math Phys, 257, 29-42 (2005) · Zbl 1080.83002 · doi:10.1007/s00220-005-1345-2
[119] Chruściel, PT; Corvino, J.; Isenberg, J., Initial data for the relativistic gravitational \(N\)-body problem, Class Quantum Grav, 27, 222002 (2010) · Zbl 1204.83013 · doi:10.1088/0264-9381/27/22/222002
[120] Chruściel, PT; Galloway, GJ; Pollack, D., Mathematical general relativity: a sampler, Bull Am Math Soc, 47, 567-638 (2010) · Zbl 1205.83002 · doi:10.1090/s0273-0979-2010-01304-5
[121] Chruściel, PT; Corvino, J.; Isenberg, J., Construction of \(N\)-body initial data sets in general relativity, Commun Math Phys, 304, 637-647 (2011) · Zbl 1216.83010 · doi:10.1007/s00220-011-1244-7
[122] Chruściel, PT; Mazzeo, R.; Pocchiola, S., Initial data sets with ends of cylindrical type: II. The vector constraint equation, Adv Theor Math Phys, 17, 829-865 (2013) · Zbl 1291.83023 · doi:10.4310/atmp.2013.v17.n4.a4
[123] Cook, GB, Initial data for numerical relativity, Living Rev Relativ, 3, 5 (2000) · Zbl 1024.83001 · doi:10.12942/lrr-2000-5
[124] Corvino, J., Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun Math Phys, 214, 137-189 (2000) · Zbl 1031.53064 · doi:10.1007/pl00005533
[125] Corvino J, Huang LH (2016) Localized deformation for initial data sets with the dominant energy condition. arXiv e-prints 10.1007/s00526-019-1679-9. arXiv:1606.03078 · Zbl 1443.53021
[126] Corvino J, Pollack D (2011) Scalar curvature and the Einstein constraint equations. In: Surveys in geometric analysis and relativity. Advanced Lectures in Mathematics, vol 20. International Press, Somerville, MA, pp 145-188 · Zbl 1268.53048
[127] Corvino, J.; Schoen, RM, On the asymptotics for the vacuum Einstein constraint equations, J Differ Geom, 73, 185-217 (2006) · Zbl 1122.58016 · doi:10.4310/jdg/1146169910
[128] Corvino, J.; Eichmair, M.; Miao, P., Deformation of scalar curvature and volume, Math Ann, 357, 551-584 (2013) · Zbl 1278.53041 · doi:10.1007/s00208-013-0903-8
[129] Crandall, MG; Rabinowitz, PH, Bifurcation from simple eigenvalues, J Funct Anal, 8, 321-340 (1971) · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[130] Cvetič, M.; Gibbons, GW; Pope, CN, More about Birkhoff’s invariant and Thorne’s hoop conjecture for horizons, Class Quantum Grav, 28, 195001 (2011) · Zbl 1226.83082 · doi:10.1088/0264-9381/28/19/195001
[131] Czimek, S., An extension procedure for the constraint equations, Ann PDE, 4, 2 (2018) · Zbl 1403.35287 · doi:10.1007/s40818-017-0039-3
[132] Czimek, S., The localised bounded \(L^2\)-curvature theorem, Commun Math Phys, 372, 71-90 (2019) · Zbl 1427.53085 · doi:10.1007/s00220-019-03458-9
[133] Dahl M, Sakovich A (2015) A density theorem for asymptotically hyperbolic initial data satisfying the dominant energy condition. arXiv e-prints arXiv:1502.07487
[134] Dahl, M.; Gicquaud, R.; Humbert, E., A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method, Duke Math J, 161, 2669-2697 (2012) · Zbl 1258.53037 · doi:10.1215/00127094-1813182
[135] Dain, S., Trapped surfaces as boundaries for the constraint equations, Class Quantum Grav, 21, 555-573 (2004) · Zbl 1050.83019 · doi:10.1088/0264-9381/22/4/c01
[136] Dain, S., Proof of the angular momentum-mass inequality for axisymmetric black holes, J Differ Geom, 79, 33-67 (2008) · Zbl 1157.83013 · doi:10.4310/jdg/1207834657
[137] Dain, S.; Gabach Clément, ME, Extreme Bowen-York initial data, Class Quantum Grav, 26, 035020 (2009) · Zbl 1159.83018 · doi:10.1088/0264-9381/26/3/035020
[138] Dain, S.; Gabach Clément, ME, Small deformations of extreme Kerr black hole initial data, Class Quantum Grav, 28, 075003 (2011) · Zbl 1213.83085 · doi:10.1088/0264-9381/28/7/075003
[139] Dain, S.; Gabach-Clement, ME, Geometrical inequalities bounding angular momentum and charges in general relativity, Living Rev Relativ, 21, 5 (2018) · doi:10.1007/s41114-018-0014-7
[140] Daszuta, B.; Frauendiener, J., Numerical initial data deformation exploiting a gluing construction: I. Exterior asymptotic Schwarzschild, Class Quantum Grav, 36, 185008 (2019) · Zbl 1479.83030 · doi:10.1088/1361-6382/ab34d8
[141] De Lellis C (2008) Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio [after Ambrosio, DiPerna, Lions]. Astérisque 317:Exposé No. 972, 175-203. Séminaire Bourbaki. Vol. 2006/2007 · Zbl 1169.35060
[142] Delay E (2020) Hilbert manifold structure on fibers of the scalar curvature and the constraint operator. arXiv e-prints arXiv:2003.02129
[143] Delay E, Fougeirol J (2016) Hilbert manifold structure for asymptotically hyperbolic relativistic initial data. arXiv e-prints arXiv:1607.05616
[144] Delay, E.; Mazzieri, L., Refined gluing for vacuum Einstein constraint equations, Geom Dedicata, 173, 393-415 (2014) · Zbl 1316.53043 · doi:10.1007/s10711-013-9948-9
[145] Dilts, J., The Einstein constraint equations on compact manifolds with boundary, Class Quantum Grav, 31, 125009 (2014) · Zbl 1298.83015 · doi:10.1088/0264-9381/31/12/125009
[146] Dilts J (2015) The Einstein constraint equations on asymptotically Euclidean manifolds. PhD thesis, University of Oregon. arXiv:1507.01913 [gr-qc] · Zbl 1319.83006
[147] Dilts, J.; Isenberg, J., Existence and blowup results for asymptotically Euclidean initial data sets generated by the conformal method, Phys Rev D, 94, 104046 (2016) · doi:10.1103/physrevd.94.104046
[148] Dilts, J.; Leach, J., A limit equation criterion for solving the Einstein constraint equations on manifolds with ends of cylindrical type, Ann Henri Poincaré, 16, 1583-1607 (2015) · Zbl 1319.83006 · doi:10.1007/s00023-014-0357-x
[149] Dilts, J.; Maxwell, D., Yamabe classification and prescribed scalar curvature in the asymptotically Euclidean setting, Commun Anal Geom, 26, 1127-1168 (2018) · Zbl 1408.53046 · doi:10.4310/cag.2018.v26.n5.a5
[150] Dilts, J.; Isenberg, J.; Mazzeo, R.; Meier, C., Non-CMC solutions of the Einstein constraint equations on asymptotically Euclidean manifolds, Class Quantum Grav, 31, 065001 (2014) · Zbl 1292.83009 · doi:10.1088/0264-9381/31/6/065001
[151] Dinkelbach, J.; Leeb, B., Equivariant Ricci flow with surgery and applications to finite group actions on geometric 3-manifolds, Geom Topol, 13, 1129-1173 (2009) · Zbl 1181.57023 · doi:10.2140/gt.2009.13.1129
[152] DiPerna, RJ; Lions, PL, Ordinary differential equations, transport theory and Sobolev spaces, Invent Math, 98, 511-547 (1989) · Zbl 0696.34049 · doi:10.1007/bf01393835
[153] Douglis, A.; Nirenberg, L., Interior estimates for elliptic systems of partial differential equations, Commun Pure Appl Math, 8, 503-538 (1955) · Zbl 0066.08002 · doi:10.1002/cpa.3160080406
[154] Ebin DG (1970) The manifold of Riemannian metrics. In: Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968). American Mathematical Society, Providence, R.I., pp 11-40. doi:10.1090/pspum/015/0267604 · Zbl 0205.53702
[155] Eichmair, M., The Jang equation reduction of the spacetime positive energy theorem in dimensions less than eight, Commun Math Phys, 319, 575-593 (2013) · Zbl 1269.53070 · doi:10.1007/s00220-013-1700-7
[156] Eichmair, M.; Huang, LH; Lee, DA; Schoen, R., The spacetime positive mass theorem in dimensions less than eight, J Eur Math Soc, 18, 83-121 (2016) · Zbl 1341.53067 · doi:10.4171/jems/584
[157] Escobar, JF, Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary, Ann Math, 136, 1-50 (1992) · Zbl 0766.53033 · doi:10.2307/2946545
[158] Escobar, JF, The Yamabe problem on manifolds with boundary, J Differ Geom, 35, 21-84 (1992) · Zbl 0771.53017 · doi:10.4310/jdg/1214447805
[159] Fischer, AE; Marsden, JE, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system. I, Commun Math Phys, 28, 1-38 (1972) · Zbl 0247.35082 · doi:10.1007/bf02099369
[160] Fischer, AE; Marsden, JE, Linearization stability of the Einstein equations, Bull Am Math Soc, 79, 997-1003 (1973) · Zbl 0274.58003 · doi:10.1090/s0002-9904-1973-13299-9
[161] Fischer, AE; Marsden, JE, Deformations of the scalar curvature, Duke Math J, 42, 519-547 (1975) · Zbl 0336.53032 · doi:10.1215/s0012-7094-75-04249-0
[162] Fischer AE, Marsden JE (1975b) Linearization stability of nonlinear partial differential equations. In: Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973). pp 219-263. doi:10.1090/pspum/027.2/0383456 · Zbl 0314.53031
[163] Fischer, AE; Marsden, JE; Moncrief, V., The structure of the space of solutions of Einstein’s equations. I. One Killing field, Ann Inst Henri Poincare, 33, 147-194 (1980) · Zbl 0454.53044
[164] Friedrich, H., On the hyperbolicity of Einstein’s and other gauge field equations, Commun Math Phys, 100, 525-543 (1985) · Zbl 0588.35058 · doi:10.1007/bf01217728
[165] Friedrich, H., On the existence of \(n\)-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, Commun Math Phys, 107, 587-609 (1986) · Zbl 0659.53056 · doi:10.1007/bf01205488
[166] Friedrich, H., Einstein equations and conformal structure: existence of anti-de Sitter-type space-times, J Geom Phys, 17, 125-184 (1995) · Zbl 0840.53055 · doi:10.1016/0393-0440(94)00042-3
[167] Friedrich, H., Static vacuum solutions from convergent null data expansions at space-like infinity, Ann Henri Poincaré, 8, 817-884 (2007) · Zbl 1203.83011 · doi:10.1007/s00023-006-0323-3
[168] Friedrich, H., Yamabe numbers and the Brill-Cantor criterion, Ann Henri Poincare, 12, 1019-1025 (2011) · Zbl 1216.83021 · doi:10.1007/s00023-011-0102-7
[169] Friedrich, H., Peeling or not peeling—is that the question?, Class Quantum Grav, 35, 083001 (2018) · Zbl 1409.83043 · doi:10.1088/1361-6382/aaafdb
[170] Friedrich H, Rendall A (2000) The Cauchy problem for the Einstein equations. In: Einstein’s field equations and their physical implications. Lecture notes in physics, vol 540. Springer, Berlin, pp 127-223. doi:10.1007/3-540-46580-4_2 · Zbl 1006.83003
[171] Friedrich, H.; Schmidt, BG, Conformal geodesics in general relativity, Proc R Soc London Ser A, 414, 171-195 (1987) · Zbl 0629.53063 · doi:10.1098/rspa.1987.0139
[172] Gabach Clément, ME, Conformally flat black hole initial data with one cylindrical end, Class Quantum Grav, 27, 125010 (2010) · Zbl 1191.83008 · doi:10.1088/0264-9381/27/12/125010
[173] Gallot, S.; Hulin, D.; Lafontaine, J., Riemannian geometry (2004), Berlin: Springer, Berlin · Zbl 1068.53001 · doi:10.1007/978-3-642-18855-8
[174] Galloway, GJ; Miao, P.; Schoen, R., Initial data and the Einstein constraint equations, General relativity and gravitation, 412-448 (2015), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9781139583961.012
[175] Gibbons G (2009) Birkhoff’s invariant and Thorne’s hoop conjecture. arXiv e-prints arXiv:0903.1580 · Zbl 1226.83082
[176] Gicquaud, R., De l’équation de prescription de courbure scalaire aux équations de contrainte en relativité générale sur une variété asymptotiquement hyperbolique, J Math Pures Appl, 94, 200-227 (2010) · Zbl 1196.53026 · doi:10.1016/j.matpur.2010.03.011
[177] Gicquaud R (2018) Solutions to the Einstein constraint equations with a small TT-tensor and vanishing yamabe invariant. arXiv e-prints arXiv:1802.05080
[178] Gicquaud R (2019) Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation. arXiv e-prints arXiv:1909.05343
[179] Gicquaud, R.; Ngô, QA, A new point of view on the solutions to the Einstein constraint equations with arbitrary mean curvature and small TT-tensor, Class Quantum Grav, 31, 190514 (2014) · Zbl 1304.83006 · doi:10.1088/0264-9381/31/19/195014
[180] Gicquaud, R.; Nguyen, C., Solutions to the Einstein-scalar field constraint equations with a small TT-tensor, Calc Var, 55, 29 (2016) · Zbl 1339.83020 · doi:10.1007/s00526-016-0963-1
[181] Gicquaud, R.; Sakovich, A., A large class of non-constant mean curvature solutions of the Einstein constraint equations on an asymptotically hyperbolic manifold, Commun Math Phys, 310, 705-763 (2012) · Zbl 1247.83010 · doi:10.1007/s00220-012-1420-4
[182] Gidas, B.; Ni, WM; Nirenberg, L., Symmetry and related properties via the maximum principle, Commun Math Phys, 68, 209-243 (1979) · Zbl 0425.35020 · doi:10.1007/bf01221125
[183] Gidas B, Ni WM, Nirenberg L (1981) Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}}^n \). In: Mathematical analysis and applications, Part A. Adv. in Math. Suppl. Stud., vol 7. Academic Press, New York-London, pp 369-402 · Zbl 0469.35052
[184] Gilbarg D, Trudinger NS (2001) Elliptic partial differential equations of second order. Classics in Mathematics, Springer, Berlin. doi:10.1007/978-3-642-61798-0, reprint of the 1998 edition · Zbl 1042.35002
[185] Gromov, M., Stable mappings of foliations into manifolds, Izv Akad Nauk SSSR Ser Mat, 33, 707-734 (1969) · Zbl 0205.53502 · doi:10.1070/im1969v003n04abeh000796
[186] Gromov M (2018) A dozen problems, questions and conjectures about positive scalar curvature. In: Foundations of mathematics and physics one century after Hilbert. Springer. doi:10.1007/978-3-319-64813-2_6 · Zbl 1432.53052
[187] Gromov M (2019) No metrics with positive scalar curvatures on aspherical 5-manifolds. arXiv e-prints arXiv:2009.05332
[188] Gromov, M.; Lawson, HB Jr, The classification of simply connected manifolds of positive scalar curvature, Ann Math, 111, 423-434 (1980) · Zbl 0463.53025 · doi:10.2307/1971103
[189] Gromov, M.; Lawson, HB Jr, Spin and scalar curvature in the presence of a fundamental group. I, Ann Math, 111, 209-230 (1980) · Zbl 0445.53025 · doi:10.2307/1971198
[190] Gromov, M.; Lawson, HB Jr, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst Hautes Études Sci Publ Math, 58, 83-196 (1983) · Zbl 0538.53047 · doi:10.1007/bf02953774
[191] Guillemin, V.; Pollack, A., Differential topology (1974), Englewood Cliffs: Prentice-Hall, Englewood Cliffs · Zbl 0361.57001 · doi:10.1090/chel/370
[192] Müller zum Hagen, H.; Robinson, DC; Seifert, HJ, Black holes in static vacuum space-times, Gen Relativ Gravit, 4, 53-78 (1973) · doi:10.1007/bf00769760
[193] Hamilton, RS, Three-manifolds with positive Ricci curvature, J Differ Geom, 17, 255-306 (1982) · Zbl 0504.53034 · doi:10.4310/jdg/1214436922
[194] Hanke B (2019) Positive scalar curvature on manifolds with odd order abelian fundamental groups. arXiv e-prints arXiv:1908.00944
[195] Hanke, B.; Schick, T.; Steimle, W., The space of metrics of positive scalar curvature, Publ Math Inst Hautes Études Sci, 120, 335-367 (2014) · Zbl 1321.58008 · doi:10.1007/s10240-014-0062-9
[196] Hebey, E.; Veronelli, G., The Lichnerowicz equation in the closed case of the Einstein-Maxwell theory, Trans Amer Math Soc, 366, 1179-1193 (2014) · Zbl 1290.58014 · doi:10.1090/S0002-9947-2013-05790-X
[197] Hebey, E.; Pacard, F.; Pollack, D., A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Commun Math Phys, 278, 117-132 (2008) · Zbl 1218.53042 · doi:10.1007/s00220-007-0377-1
[198] Herzlich M (2005) Mass formulae for asymptotically hyperbolic manifolds. In: AdS/CFT correspondence: Einstein metrics and their conformal boundaries. IRMA Lect. Math. Theor. Phys., vol 8. Eur. Math. Soc., Zürich, pp 103-121 · Zbl 1082.53034
[199] Hirsch S, Lesourd M (2019) On the moduli space of asymptotically flat manifolds with boundary and the constraint equations. arXiv e-prints arXiv:1911.02687
[200] Hitchin, N., Harmonic spinors, Adv Math, 14, 1-55 (1974) · Zbl 0284.58016 · doi:10.1016/0001-8708(74)90021-8
[201] Holst, M.; Meier, C., Non-CMC solutions to the Einstein constraint equations on asymptotically Euclidean manifolds with apparent horizon boundaries, Class Quantum Grav, 32, 025006 (2015) · Zbl 1307.83002 · doi:10.1088/0264-9381/32/2/025006
[202] Holst, M.; Tsogtgerel, G., The Lichnerowicz equation on compact manifolds with boundary, Class Quantum Grav, 30, 205011 (2013) · Zbl 1276.83007 · doi:10.1088/0264-9381/30/20/205011
[203] Holst, M.; Nagy, G.; Tsogtgerel, G., Far-from-constant mean curvature solutions of Einstein’s constraint equations with positive Yamabe metrics, Phys Rev Lett, 100, 161101 (2008) · Zbl 1228.83015 · doi:10.1103/physrevlett.100.161101
[204] Holst, M.; Nagy, G.; Tsogtgerel, G., Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions, Commun Math Phys, 288, 547-613 (2009) · Zbl 1175.83010 · doi:10.1007/s00220-009-0743-2
[205] Holst, M.; Sarbach, O.; Tiglio, M.; Vallisneri, M., The emergence of gravitational wave science: 100 years of development of mathematical theory, detectors, numerical algorithms, and data analysis tools, Bull Am Math Soc, 53, 513-554 (2016) · Zbl 1350.83009 · doi:10.1090/bull/1544
[206] Holst, M.; Meier, C.; Tsogtgerel, G., Non-CMC solutions of the Einstein constraint equations on compact manifolds with apparent horizon boundaries, Commun Math Phys, 357, 467-517 (2018) · Zbl 1390.83020 · doi:10.1007/s00220-017-3004-9
[207] Huang LH, Lee DA (2020a) Bartnik minimers and improvability of the dominant energy scalar. arXiv e-prints arXiv:2007.00593
[208] Huang, LH; Lee, DA, Equality in the spacetime positive mass theorem, Commun Math Phys, 376, 2379-2407 (2020) · Zbl 1440.53078 · doi:10.1007/s00220-019-03619-w
[209] Huang, LH; Schoen, R.; Wang, MT, Specifying angular momentum and center of mass for vacuum initial data sets, Commun Math Phys, 306, 785-803 (2011) · Zbl 1227.83008 · doi:10.1007/s00220-011-1295-9
[210] Huang, LH; Jang, HC; Martin, D., Mass rigidity for hyperbolic manifolds, Commun Math Phys, 376, 2329-2349 (2020) · Zbl 1440.81066 · doi:10.1007/s00220-019-03623-0
[211] Hughes, TJR; Kato, T.; Marsden, JE, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch Ration Mech Anal, 63, 273-294 (1977) · Zbl 0361.35046 · doi:10.1007/bf00251584
[212] Huisken, G.; Ilmanen, T., The inverse mean curvature flow and the Riemannian Penrose inequality, J Differ Geom, 59, 353-437 (2001) · Zbl 1055.53052 · doi:10.4310/jdg/1090349447
[213] Huneau, C., Constraint equations for \(3+1\) vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case II, Asymptot Anal, 96, 51-89 (2015) · Zbl 1337.83012 · doi:10.3233/asy-151333
[214] Huneau, C., Constraint equations for \(3+1\) vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case, Ann Henri Poincare, 17, 271-299 (2016) · Zbl 1335.83007 · doi:10.1007/s00023-014-0392-7
[215] Isenberg, J., Constant mean curvature solutions of the Einstein constraint equations on closed manifolds, Class Quantum Grav, 12, 2249-2274 (1995) · Zbl 0840.53056 · doi:10.1088/0264-9381/12/9/013
[216] Isenberg J (2014) The initial value problem in general relativity. In: Springer handbook of spacetime. Springer, Dordrecht, pp 303-321. doi:10.1007/978-3-642-41992-8_16
[217] Isenberg, J.; Moncrief, V., A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds, Class Quantum Grav, 13, 1819-1847 (1996) · Zbl 0860.53056 · doi:10.1088/0264-9381/13/7/015
[218] Isenberg, J.; Ó Murchadha, N., Non-CMC conformal data sets which do not produce solutions of the Einstein constraint equations, Class Quantum Grav, 21, S233-S241 (2004) · Zbl 1042.83007 · doi:10.1088/0264-9381/21/3/013
[219] Isenberg, J.; Park, J., Asymptotically hyperbolic non-constant mean curvature solutions of the Einstein constraint equations. Geometry and physics, Class Quantum Grav, 14, 14, A189-A201 (1997) · Zbl 0866.35126 · doi:10.1088/0264-9381/14/1A/016
[220] Isenberg, J.; Mazzeo, R.; Pollack, D., Gluing and wormholes for the Einstein constraint equations, Commun Math Phys, 231, 529-568 (2002) · Zbl 1013.83008 · doi:10.1007/s00220-002-0722-3
[221] Isenberg, J.; Maxwell, D.; Pollack, D., A gluing construction for non-vacuum solutions of the Einstein-constraint equations, Adv Theor Math Phys, 9, 129-172 (2005) · Zbl 1101.83005 · doi:10.4310/atmp.2005.v9.n1.a3
[222] Isenberg, J.; Lee, JM; Stavrov Allen, I., Asymptotic gluing of asymptotically hyperbolic solutions to the Einstein constraint equations, Ann Henri Poincare, 11, 881-927 (2010) · Zbl 1208.83032 · doi:10.1007/s00023-010-0049-0
[223] Israel, W., Event horizons in static vacuum space-times, Phys Rev, 164, 1776-1779 (1967) · doi:10.1103/physrev.164.1776
[224] Jaco W (1980) Lectures on three-manifold topology, CBMS regional conference series in mathematics, vol 43. American Mathematical Society, Providence, RI. doi:10.1090/cbms/043 · Zbl 0433.57001
[225] Jin, Q.; Li, Y.; Xu, H., Symmetry and asymmetry: the method of moving spheres, Adv Differ Equations, 13, 601-640 (2008) · Zbl 1201.35099
[226] Jin, ZR; Chern, SS, A counterexample to the Yamabe problem for complete noncompact manifolds, Partial differential equations (Tianjin, 1986). Lecture Notes in Mathematics, 93-101 (1988), Berlin: Springer, Berlin · Zbl 0648.53022 · doi:10.1007/bfb0082927
[227] Joudioux, J., Gluing for the constraints for higher spin fields, J Math Phys, 58, 111513 (2017) · Zbl 1386.83047 · doi:10.1063/1.5001004
[228] Joyce, D., Constant scalar curvature metrics on connected sums, Int J Math Math Sci, 2003, 405-450 (2003) · Zbl 1026.53019 · doi:10.1155/s016117120310806x
[229] Kánnár, J., Hyperboloidal initial data for the vacuum Einstein equations with cosmological constant, Class Quantum Grav, 13, 3075-3084 (1996) · Zbl 0869.53057 · doi:10.1088/0264-9381/13/11/021
[230] Kazdan JL (1985) Prescribing the curvature of a Riemannian manifold, CBMS regional conference series in mathematics, vol 57. American Mathematical Society, Providence, RI. doi:10.1090/cbms/057 · Zbl 0561.53048
[231] Kazdan, JL; Warner, FW, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann Math, 101, 317-331 (1975) · Zbl 0297.53020 · doi:10.2307/1970993
[232] Kazdan JL, Warner FW (1975b) Prescribing curvatures. In: Chern SS, Osserman R (eds) Differential geometry (Proceedings of the Symposium Pure Mathematics, Vol. XXVII, Stanford University, Stanford, Calif., (1973) Part 2. American Mathematical Society, Providence, RI, pp 309-319 · Zbl 0313.53017
[233] Kazdan, JL; Warner, FW, Scalar curvature and conformal deformation of Riemannian structure, J Differ Geom, 10, 113-134 (1975) · Zbl 0296.53037 · doi:10.4310/jdg/1214432678
[234] Khavkine, I., Topology, rigid cosymmetries and linearization instability in higher gauge theories, Ann Henri Poincare, 16, 255-288 (2015) · Zbl 1315.35217 · doi:10.1007/s00023-014-0321-9
[235] Khuri, M.; Weinstein, G.; Yamada, S., Proof of the Riemannian Penrose inequality with charge for multiple black holes, J Differ Geom, 106, 451-498 (2017) · Zbl 1386.83039 · doi:10.4310/jdg/1500084023
[236] Klainerman S (2010) PDE as a unified subject. In: Alon N, Bourgain J, Connes A, Gromov M, Milman V (eds) Visions in mathematics: GAFA 2000 special volume, part I. Birkhäuser, Basel, pp 279-315. doi:10.1007/978-3-0346-0422-2_10, originally published in GAFA Geometr Funct Anal (2000) · Zbl 1002.35002
[237] Klainerman, S.; Rodnianski, I., The causal structure of microlocalized rough Einstein metrics, Ann Math, 161, 1195-1243 (2005) · Zbl 1089.83007 · doi:10.4007/annals.2005.161.1195
[238] Klainerman, S.; Rodnianski, I., Rough solutions of the Einstein-vacuum equations, Ann Math, 161, 1143-1193 (2005) · Zbl 1089.83006 · doi:10.4007/annals.2005.161.1143
[239] Klainerman, S.; Rodnianski, I.; Szeftel, J., The bounded \(L^2\) curvature conjecture, Invent Math, 202, 91-216 (2015) · Zbl 1330.53089 · doi:10.1007/s00222-014-0567-3
[240] Kleiner, B.; Lott, J., Notes on Perelman’s papers, Geom Topol, 12, 2587-2855 (2008) · Zbl 1204.53033 · doi:10.2140/gt.2008.12.2587
[241] Kleiner, B.; Lott, J., Singular Ricci flows I, Acta Math, 219, 65-134 (2017) · Zbl 1396.53090 · doi:10.4310/acta.2017.v219.n1.a4
[242] Kosinski, AA, Differential manifolds. Pure and applied mathematics (1993), Boston: Academic Press Inc, Boston · Zbl 0767.57001
[243] Kreck, M.; Stolz, S., Nonconnected moduli spaces of positive sectional curvature metrics, J Am Math Soc, 6, 825-850 (1993) · Zbl 0793.53041 · doi:10.1090/s0894-0347-1993-1205446-4
[244] Lang, S., Algebra. Revised third edition, Graduate texts in mathematics (2002), New York: Springer, New York · Zbl 0984.00001
[245] Lawson, HB Jr, Complete minimal surfaces in \(S^3\), Ann Math, 92, 335-374 (1970) · Zbl 0205.52001 · doi:10.2307/1970625
[246] Lawson, HB Jr; Michelsohn, ML, Spin geometry. Princeton mathematical series (1989), Princeton: Princeton University Press, Princeton · Zbl 0688.57001
[247] Leach, J., A far-from-CMC existence result for the constraint equations on manifolds with ends of cylindrical type, Class Quantum Grav, 31, 035003 (2014) · Zbl 1470.83015 · doi:10.1088/0264-9381/31/3/035003
[248] Leach, J., Non-constant mean curvature trumpet solutions for the Einstein constraint equations, Class Quantum Grav, 33, 145001 (2016) · Zbl 1346.83043 · doi:10.1088/0264-9381/33/14/145001
[249] LeBrun, C., On the scalar curvature of complex surfaces, Geom Funct Anal, 5, 619-628 (1995) · Zbl 0832.53053 · doi:10.1007/bf01895835
[250] LeBrun, C., Kodaira dimension and the Yamabe problem, Commun Anal Geom, 7, 133-156 (1999) · Zbl 0996.32009 · doi:10.4310/cag.1999.v7.n1.a5
[251] Lee, DA, Geometric relativity. Graduate studies in mathematics (2019), Providence: American Mathematical Society, Providence · Zbl 07124831 · doi:10.1090/gsm/201
[252] Lee, JM; Parker, TH, The Yamabe problem, Bull Am Math Soc, 17, 37-91 (1987) · Zbl 0633.53062 · doi:10.1090/s0273-0979-1987-15514-5
[253] LeFloch PG, Nguyen TC (2019) The seed-to-solution for the Einstein equations and the asymptotic localization problem. arXiv e-prints arXiv:1903.00243
[254] Lesourd M, Unger R, Yau ST (2020) Positive scalar curvature on noncompact manifolds and the Liouville theorem. arXiv e-prints arXiv:2009.12618
[255] Li, J.; Yu, P., Construction of Cauchy data of vacuum Einstein field equations evolving to black holes, Ann Math, 181, 699-768 (2015) · Zbl 1321.83011 · doi:10.4007/annals.2015.181.2.6
[256] Lichnerowicz, A., L’intégration des équations de la gravitation relativiste et le problème des \(n\) corps, J Math Pures Appl, 23, 37-63 (1944) · Zbl 0060.44410
[257] Lichnerowicz, A., Spineurs harmoniques, C R Acad Sci Paris, 257, 7-9 (1963) · Zbl 0136.18401
[258] Lockhart, RB; McOwen, RC, On elliptic systems in \({\mathbb{R}}^n \), Acta Math, 150, 125-135 (1983) · Zbl 0517.35031 · doi:10.1007/BF02392969
[259] Lockhart, RB; McOwen, RC, Elliptic differential operators on noncompact manifolds, Ann Scuola Norm Sup Pisa Cl Sci, 12, 409-447 (1985) · Zbl 0615.58048
[260] Lohkamp, J., Scalar curvature and hammocks, Math Ann, 313, 385-407 (1999) · Zbl 0943.53024 · doi:10.1007/s002080050266
[261] Lohkamp J (2015) Skin structures on minimal hypersurfaces. arXiv e-prints arXiv:1512.08249
[262] Lohkamp J (2016) The higher dimensional positive mass theorem II. arXiv e-prints arXiv:1612.07505
[263] Ma, L.; Wei, J., Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds, J Math Pures Appl, 99, 174-186 (2013) · Zbl 1263.58010 · doi:10.1016/j.matpur.2012.06.009
[264] Maerten, D., Positive energy-momentum theorem for AdS-asymptotically hyperbolic manifolds, Ann Henri Poincare, 7, 975-1011 (2006) · Zbl 1255.83021 · doi:10.1007/s00023-006-0273-9
[265] Mantoulidis, C.; Miao, P.; Bieri, L.; Chruściel, PT; Yau, ST, Mean curvature deficit and quasi-local mass, Nonlinear analysis in geometry and applied mathematics. Harvard CMSA series in mathematics, 99-107 (2017), Somerville: International Press, Somerville · Zbl 1380.83082
[266] Mantoulidis, C.; Miao, P., Total mean curvature, scalar curvature, and a variational analog of Brown-York mass, Commun Math Phys, 352, 703-718 (2017) · Zbl 1375.58017 · doi:10.1007/s00220-016-2767-8
[267] Mantoulidis, C.; Schoen, R., On the Bartnik mass of apparent horizons, Class Quantum Grav, 32, 205002 (2015) · Zbl 1326.83051 · doi:10.1088/0264-9381/32/20/205002
[268] Marques, FC, Existence results for the Yamabe problem on manifolds with boundary, Indiana Univ Math J, 54, 1599-1620 (2005) · Zbl 1090.53043 · doi:10.1512/iumj.2005.54.2590
[269] Marques, F., Deforming three-manifolds with positive scalar curvature, Ann Math, 176, 815-863 (2012) · Zbl 1319.53028 · doi:10.4007/annals.2012.176.2.3
[270] Mars, M., Constraint equations for general hypersurfaces and applications to shells, Gen Relativ Gravit, 45, 2175-2221 (2013) · Zbl 1278.83010 · doi:10.1007/s10714-013-1579-9
[271] Marsden, JE; Tipler, FJ, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys Rep, 66, 109-139 (1980) · doi:10.1016/0370-1573(80)90154-4
[272] Maxwell, D., Rough solutions of the Einstein constraint equations on compact manifolds, J Hyperbol Differ Equations, 2, 521-546 (2005) · Zbl 1076.58021 · doi:10.1142/s021989160500049x
[273] Maxwell, D., Solutions of the Einstein constraint equations with apparent horizon boundaries, Commun Math Phys, 253, 561-583 (2005) · Zbl 1065.83011 · doi:10.1007/s00220-004-1237-x
[274] Maxwell, D., Rough solutions of the Einstein constraint equations, J Reine Angew Math, 590, 1-29 (2006) · Zbl 1088.83004 · doi:10.1515/crelle.2006.001
[275] Maxwell, D., A class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature, Math Res Lett, 16, 627-645 (2009) · Zbl 1187.83022 · doi:10.4310/mrl.2009.v16.n4.a6
[276] Maxwell, D., A model problem for conformal parameterizations of the Einstein constraint equations, Commun Math Phys, 302, 697-736 (2011) · Zbl 1215.53064 · doi:10.1007/s00220-011-1187-z
[277] Maxwell, D., The conformal method and the conformal thin-sandwich method are the same, Class Quantum Grav, 31, 145006 (2014) · Zbl 1295.83015 · doi:10.1088/0264-9381/31/14/145006
[278] Mazzeo, R.; Pacard, F., Maskit combinations of Poincaré-Einstein metrics, Adv Math, 204, 379-412 (2006) · Zbl 1097.53029 · doi:10.1016/j.aim.2005.06.001
[279] Mazzeo, R.; Pollack, D.; Uhlenbeck, K., Connected sum constructions for constant scalar curvature metrics, Topol Methods Nonlinear Anal, 6, 207-233 (1995) · Zbl 0866.58069 · doi:10.12775/tmna.1995.042
[280] Mazzeo, R.; Pollack, D.; Uhlenbeck, K., Moduli spaces of singular Yamabe metrics, J Am Math Soc, 9, 303-344 (1996) · Zbl 0849.58012 · doi:10.1090/s0894-0347-96-00208-1
[281] Mazzieri, L., Generalized connected sum construction for nonzero constant scalar curvature metrics, Commun Partial Differ Equations, 33, 1-17 (2008) · Zbl 1156.53021 · doi:10.1080/03605300600856741
[282] Mazzieri, L., Generalized connected sum construction for scalar flat metrics, Manuscr Math, 129, 137-168 (2009) · Zbl 1230.53034 · doi:10.1007/s00229-009-0250-y
[283] Mazzieri, L., Generalized gluing for Einstein constraint equations, Calc Var Partial Differ Equations, 34, 453-473 (2009) · doi:10.1007/s00526-008-0191-4
[284] McCormick, S., A note on mass-minimising extensions, Gen Relativ Gravit, 47, 145 (2015) · Zbl 1335.83010 · doi:10.1007/s10714-015-1993-2
[285] McFeron, D.; Székelyhidi, G., On the positive mass theorem for manifolds with corners, Commun Math Phys, 313, 425-443 (2012) · Zbl 1253.53032 · doi:10.1007/s00220-012-1498-8
[286] Miao, P., Positive mass theorem on manifolds admitting corners along a hypersurface, Adv Theor Math Phys, 6, 1163-1182 (2002) · doi:10.4310/atmp.2002.v6.n6.a4
[287] Miao, P., Quasi-local mass via isometric embeddings: a review from a geometric perspective, Class Quantum Grav, 32, 233001 (2015) · Zbl 1329.83003 · doi:10.1088/0264-9381/32/23/233001
[288] Miao, P.; Tam, LF, Evaluation of the ADM mass and center of mass via the Ricci tensor, Proc Amer Math Soc, 144, 753-761 (2016) · Zbl 1335.83012 · doi:10.1090/proc12726
[289] Miao, P.; Xie, N., On compact 3-manifolds with nonnegative scalar curvature with a CMC boundary component, Trans Amer Math Soc, 370, 5887-5906 (2018) · Zbl 1392.53055 · doi:10.1090/tran/7500
[290] Miao, P.; Xie, N., Bartnik mass via vacuum extensions, Int J Math, 30, 1940006 (2019) · Zbl 1430.53045 · doi:10.1142/s0129167x19400068
[291] Miao, P.; Wang, Y.; Xie, N., On Hawking mass and Bartnik mass of CMC surfaces, Math Res Lett, 27, 855-885 (2020) · Zbl 1464.53084 · doi:10.4310/mrl.2020.v27.n3.a12
[292] Michel, B., Geometric invariance of mass-like asymptotic invariants, J Math Phys, 52, 052504 (2011) · Zbl 1317.83030 · doi:10.1063/1.3579137
[293] Milnor, JW, A unique decomposition theorem for \(3\)-manifolds, Am J Math, 84, 1-7 (1962) · Zbl 0108.36501 · doi:10.2307/2372800
[294] Milnor JW (1965) Topology from the differentiable viewpoint. Weaver, The University Press of Virginia, Charlottesville, VA, Based on notes by David W. Weaver · Zbl 0136.20402
[295] Min-Oo, M., Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math Ann, 285, 527-539 (1989) · Zbl 0686.53038 · doi:10.1007/bf01452046
[296] Min-Oo M (1998) Scalar curvature rigidity of certain symmetric spaces. In: Geometry, topology, and dynamics (Montreal, PQ, 1995). CRM Proc. Lecture Notes, vol 15. American Mathematical Society, Providence, RI, pp 127-136 · Zbl 0911.53032
[297] Minguzzi, E., Lorentzian causality theory, Living Rev Relativ, 22, 3 (2019) · Zbl 1442.83021 · doi:10.1007/s41114-019-0019-x
[298] Misner, CW; Thorne, KS; Wheeler, JA, Gravitation (1973), San Francisco: W. H Freeman, San Francisco
[299] Moishezon, BG; Robb, A.; Teicher, M., On Galois covers of Hirzebruch surfaces, Math Ann, 305, 493-539 (1996) · Zbl 0853.14007 · doi:10.1007/bf01444235
[300] Moncrief, V., Spacetime symmetries and linearization stability of the Einstein equations I, J Math Phys, 16, 493-498 (1975) · Zbl 0314.53035 · doi:10.1063/1.522572
[301] Moncrief, V., Space-time symmetries and linearization stability of the Einstein equations II, J Math Phys, 17, 1893-1902 (1976) · doi:10.1063/1.522814
[302] Moncrief, V., Reflections on the U(1) problem in general relativity, J Fixed Point Theory Appl, 14, 397-418 (2013) · Zbl 1300.83005 · doi:10.1007/s11784-014-0159-2
[303] Moore, JD, Lectures on Seiberg-Witten invariants. Lecture notes in mathematics (1996), Berlin: Springer, Berlin · Zbl 0857.58001 · doi:10.1007/bfb0092948
[304] Morgan, J.; Tian, G., The geometrization conjecture. Clay mathematics monographs (2014), Providence/Cambridge: American Mathematical Society/Clay Mathematics Institute, Providence/Cambridge · Zbl 1302.53001
[305] Mounoud, P., Metrics without isometries are generic, Monatsh Math, 176, 603-606 (2015) · Zbl 1312.53093 · doi:10.1007/s00605-014-0614-6
[306] Nardmann M (2010) A remark on the rigidity case of the positive energy theorem. arXiv e-prints arXiv:1004.5430
[307] Ngô, QA; Xu, X., Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Adv Math, 230, 2378-2415 (2012) · Zbl 1256.58009 · doi:10.1016/j.aim.2012.04.007
[308] Ngô, QA; Xu, X., Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds in the null case, Commun Math Phys, 334, 193-222 (2015) · Zbl 1310.58025 · doi:10.1007/s00220-014-2133-7
[309] Nirenberg L (2001) Topics in nonlinear functional analysis. Courant Lecture Notes in Mathematics, vol 6. American Mathematical Society, Providence, RI, New York University, Courant Institute of Mathematical Sciences, New York. doi:10.1090/cln/006 · Zbl 0992.47023
[310] Obata, M., Certain conditions for a Riemannian manifold to be isometric with a sphere, J Math Soc Japan (1962) · Zbl 0115.39302 · doi:10.2969/jmsj/01430333
[311] Obata, M., The conjectures on conformal transformations of Riemannian manifolds, J Differ Geom, 6, 247-258 (1971) · Zbl 0236.53042 · doi:10.4310/jdg/1214430407
[312] Ó Murchadha, N.; York, JW Jr, Existence and uniqueness of solutions of the Hamiltonian constraint of general relativity on compact manifolds, J Math Phys, 14, 1551-1557 (1973) · Zbl 0281.53031 · doi:10.1063/1.1666225
[313] Ó Murchadha, N.; York, JW Jr, Initial-value problem of general relativity. I. General formulation and physical interpretation, Phys Rev D, 10, 428-436 (1974) · doi:10.1103/physrevd.10.428
[314] O’Neill, B., Semi-Riemannian geometry. Pure and applied mathematics (1983), New York: Academic Press, New York · Zbl 0531.53051
[315] Parker, T.; Taubes, CH, On Witten’s proof of the positive energy theorem, Commun Math Phys, 84, 223-238 (1982) · Zbl 0528.58040 · doi:10.1007/bf01208569
[316] Perelman G (2002) The entropy formula for the Ricci flow and its geometric applications. arXiv e-prints arXiv:math/0211159 · Zbl 1130.53001
[317] Perelman G (2003a) Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv e-prints. arXiv:math/0307245 · Zbl 1130.53003
[318] Perelman G (2003b) Ricci flow with surgery on three-manifolds. arXiv e-prints arXiv:math/0303109 · Zbl 1130.53002
[319] Petersen, P., Riemannian geometry. Graduate texts in mathematics (2006), New York: Springer, New York · Zbl 1417.53001 · doi:10.1007/978-3-319-26654-1
[320] Pfeiffer, HP; York, JW Jr, Extrinsic curvature and the Einstein constraints, Phys Rev D, 67, 044022 (2003) · doi:10.1103/physrevd.67.044022
[321] Pfeiffer, HP; York, JW Jr, Uniqueness and nonuniqueness in the Einstein constraints, Phys Rev Lett, 95, 091101 (2005) · doi:10.1103/physrevlett.95.091101
[322] Premoselli, B., The Einstein-scalar field constraint system in the positive case, Commun Math Phys, 326, 543-557 (2014) · Zbl 1285.83007 · doi:10.1007/s00220-013-1852-5
[323] Regge, T.; Teitelboim, C., Role of surface integrals in the Hamiltonian formulation of general relativity, Ann Phys, 88, 286-318 (1974) · Zbl 0328.70016 · doi:10.1016/0003-4916(74)90404-7
[324] Reiser P (2019) Moduli spaces of metrics of positive scalar curvature on topological spherical space forms. arXiv e-prints 10.4153/s0008439520000132. arXiv:1909.09512 · Zbl 1457.53021
[325] Rendall, AD, Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound, Class Quantum Grav, 21, 2445-2454 (2004) · Zbl 1054.83042 · doi:10.1088/0264-9381/21/9/018
[326] Rendall, AD, Intermediate inflation and the slow-roll approximation, Class Quantum Grav, 22, 1655-1666 (2005) · Zbl 1068.83020 · doi:10.1088/0264-9381/22/9/013
[327] Rendall AD (2006) Mathematical properties of cosmological models with accelerated expansion. In: Analytical and numerical approaches to mathematical relativity. Lecture notes in physics, vol 692. Springer, Berlin, pp 141-155. doi:10.1007/3-540-33484-X_7 · Zbl 1096.83079
[328] Ringström, H., The Cauchy problem in general relativity. ESI lectures in mathematics and physics (2009), Zürich: European Mathematical Society, Zürich · Zbl 1169.83003 · doi:10.4171/053
[329] Robinson, DC, A simple proof of the generalization of Israel’s theorem, Gen Relativ Gravit, 8, 695-698 (1977) · Zbl 0429.53043 · doi:10.1007/bf00756322
[330] Rosenberg J, Stolz S (2001) Metrics of positive scalar curvature and connections with surgery. In: Surveys on surgery theory, vol. 2. Annals of Mathematics Studies, vol 149. Princeton University Press, Princeton, NJ, pp 353-386. doi:10.1515/9781400865215-010 · Zbl 0971.57003
[331] Ruberman, D., An obstruction to smooth isotopy in dimension 4, Math Res Lett, 5, 743-758 (1998) · Zbl 0946.57025 · doi:10.4310/MRL.1998.v5.n6.a5
[332] Sacks, J.; Uhlenbeck, K., The existence of minimal immersions of 2-spheres, Ann Math, 113, 1-24 (1981) · Zbl 0462.58014 · doi:10.2307/1971131
[333] Sahni, V.; Papantonopoulos, E., Dark matter and dark energy, Physics of the early universe. Lecture notes in physics (2005), Berlin: Springer, Berlin · Zbl 1069.83515 · doi:10.1007/978-3-540-31535-3_5
[334] Sakovich, A., Constant mean curvature solutions of the Einstein-scalar field constraint equations on asymptotically hyperbolic manifolds, Class Quantum Grav, 27, 245019 (2010) · Zbl 1208.83023 · doi:10.1088/0264-9381/27/24/245019
[335] Sakovich A (2020) The Jang equation and the positive mass theorem in the asymptotically hyperbolic setting. arXiv e-prints arXiv:2003.07762
[336] Sbierski, J., On the existence of a maximal Cauchy development for the Einstein equations: a dezornification, Ann Henri Poincare, 17, 301-329 (2016) · Zbl 1335.83009 · doi:10.1007/s00023-015-0401-5
[337] Schick, T., A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology, 37, 1165-1168 (1998) · Zbl 0976.53052 · doi:10.1016/s0040-9383(97)00082-7
[338] Schick T (2014) The topology of positive scalar curvature. In: Proceedings of the International Congress of Mathematicians—Seoul 2014, vol II, 1285-1307, Kyung Moon Sa, Seoul. Kyung Moon Sa, Seoul · Zbl 1373.53053
[339] Schleich, K.; Witt, DM, A simple proof of Birkhoff’s theorem for cosmological constant, J Math Phys, 51, 112502 (2010) · Zbl 1314.83013 · doi:10.1063/1.3503447
[340] Schoen, R., Conformal deformation of a Riemannian metric to constant scalar curvature, J Differ Geom, 20, 479-495 (1984) · Zbl 0576.53028 · doi:10.4310/jdg/1214439291
[341] Schoen, R., The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation, Commun Pure Appl Math, 41, 317-392 (1988) · Zbl 0674.35027 · doi:10.1002/cpa.3160410305
[342] Schoen R (1989) Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Topics in calculus of variations (Montecatini Terme, 1987). Lecture notes in mathematics, vol 1365. Springer, Berlin, pp 120-154. doi:10.1007/bfb0089180 · Zbl 0702.49038
[343] Schoen, R.; Yau, ST, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann Math, 110, 127-142 (1979) · Zbl 0431.53051 · doi:10.2307/1971247
[344] Schoen, R.; Yau, ST, On the proof of the positive mass conjecture in general relativity, Commun Math Phys, 65, 45-76 (1979) · Zbl 0405.53045 · doi:10.1007/bf01940959
[345] Schoen, R.; Yau, ST, On the structure of manifolds with positive scalar curvature, Manuscr Math, 28, 159-183 (1979) · Zbl 0423.53032 · doi:10.1007/BF01647970
[346] Schoen, R.; Yau, ST, Proof of the positive mass theorem II, Commun Math Phys, 79, 231-260 (1981) · Zbl 0494.53028 · doi:10.1007/bf01942062
[347] Schoen, R.; Yau, ST, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent Math, 92, 47-71 (1988) · Zbl 0658.53038 · doi:10.1007/bf01393992
[348] Schoen R, Yau ST (2017) Positive scalar curvature and minimal hypersurface singularities. arXiv e-prints arXiv:1704.05490
[349] Smith, B.; Weinstein, G., Quasiconvex foliations and asymptotically flat metrics of non-negative scalar curvature, Commun Anal Geom, 12, 511-551 (2004) · Zbl 1073.53039 · doi:10.4310/cag.2004.v12.n3.a2
[350] Smith, HF; Tataru, D., Sharp local well-posedness results for the nonlinear wave equation, Ann Math, 162, 291-366 (2005) · Zbl 1098.35113 · doi:10.4007/annals.2005.162.291
[351] Stolz, S., Simply connected manifolds of positive scalar curvature, Ann Math, 136, 511-540 (1992) · Zbl 0784.53029 · doi:10.2307/2946598
[352] Strauss WA (1989) Nonlinear wave equations, CBMS regional conference series in mathematics, vol 73. American Mathematical Society, Providence. doi:10.1090/cbms/073 · Zbl 0714.35003
[353] Szabados, L., Quasi-local energy-momentum and angular momentum in general relativity, Living Rev Relativ, 12, 4 (2009) · Zbl 1215.83010 · doi:10.12942/lrr-2009-4
[354] Taubes, CH, The Seiberg-Witten invariants and symplectic forms, Math Res Lett, 1, 809-822 (1994) · Zbl 0853.57019 · doi:10.4310/mrl.1994.v1.n6.a15
[355] Teicher M (1999) Hirzebruch surfaces: degenerations, related braid monodromy, Galois covers. In: Algebraic geometry: Hirzebruch 70 (Warsaw, 1998). Contemp. Math., vol 241. American Mathematical Society, Providence, pp 305-325. doi:10.1090/conm/241/03642 · Zbl 0993.14017
[356] Thornburg, J., Coordinates and boundary conditions for the general relativistic initial data problem, Class Quantum Grav, 4, 1119-1131 (1987) · doi:10.1088/0264-9381/4/5/013
[357] Wald, R., General relativity (1984), Chicago: University of Chicago Press, Chicago · Zbl 0549.53001 · doi:10.7208/chicago/9780226870373.001.0001
[358] Walsh, DM, Non-uniqueness in conformal formulations of the Einstein constraints, Class Quantum Grav, 24, 1911-1925 (2007) · Zbl 1113.83008 · doi:10.1088/0264-9381/24/8/002
[359] Wang MT (2019) Quasi-local and total angular momentum in general relativity. In: Ji L, Yang L, Yau ST (eds) Proceedings of the seventh international congress of Chinese mathematicians, Vol. I. Advanced lectures in mathematics, vol 43. International Press, Somerville, MA, pp 457-472 · Zbl 1436.35298
[360] Wang, X., The mass of asymptotically hyperbolic manifolds, J Differ Geom, 57, 273-299 (2001) · Zbl 1037.53017 · doi:10.4310/jdg/1090348112
[361] Waxenegger, G.; Beig, R.; Ó Murchadha, N., Existence and uniqueness of Bowen-York trumpets, Class Quantum Grav, 28, 245002 (2011) · Zbl 1232.83017 · doi:10.1088/0264-9381/28/24/245002
[362] Wiemeler M (2020) On moduli spaces of positive scalar curvature metrics on highly connected manifolds. Int Math Res Not rnz386. doi:10.1093/imrn/rnz386. arXiv:1610.09658 · Zbl 1469.53077
[363] Witten, E., A new proof of the positive energy theorem, Commun Math Phys, 80, 381-402 (1981) · Zbl 1051.83532 · doi:10.1007/bf01208277
[364] Yamabe, H., On a deformation of Riemannian structures on compact manifolds, Osaka Math J, 12, 21-37 (1960) · Zbl 0096.37201
[365] Yau, ST; St, Yau, Problem section, Seminar on differential geometry. Annals of mathematics studies, 669-706 (1982), Princeton: Princeton University Press, Princeton · Zbl 0471.00020 · doi:10.1515/9781400881918-035
[366] Yip, P., A strictly-positive mass theorem, Commun Math Phys, 108, 653-665 (1987) · Zbl 0609.53052 · doi:10.1007/bf01214423
[367] York, JW Jr, Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity, J Math Phys, 14, 456-464 (1973) · Zbl 0259.53014 · doi:10.1063/1.1666338
[368] York, JW Jr, Conformal “thin-sandwich” data for the initial-value problem of general relativity, Phys Rev Lett, 82, 1350-1353 (1999) · Zbl 0949.83011 · doi:10.1103/physrevlett.82.1350
[369] Zhang, X., A definition of total energy-momenta and the positive mass theorem on asymptotically hyperbolic 3-manifolds I, Commun Math Phys, 249, 529-548 (2004) · Zbl 1073.83019 · doi:10.1007/s00220-004-1056-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.