×

A large class of non-constant mean curvature solutions of the Einstein constraint equations on an asymptotically hyperbolic manifold. (English) Zbl 1247.83010

Summary: We construct solutions of a constraint equation with non constant mean curvature on an asymptotically hyperbolic manifold by the conformal method. Our approach consists in decreasing a certain exponent appearing in the equations, constructing solutions of these sub-critical equations and then in letting the exponent tend to its true value. We prove that the solutions of the sub-critical equations remain bounded which yields solutions of the constraint equation unless a certain limit equation admits a non-trivial solution. Finally, we give conditions which ensure that the limit equation admits no non-trivial solution.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
35L15 Initial value problems for second-order hyperbolic equations
83C15 Exact solutions to problems in general relativity and gravitational theory
53Z05 Applications of differential geometry to physics

References:

[1] Andersson L., Chruściel P.T.: Solutions of the constraint equations in general relativity satisfying ”hyperboloidal boundary conditions”. Dissertationes Math. (Rozprawy Mat.) 355, 100 (1996) · Zbl 0873.35101
[2] Andersson L., Chruściel P.T., Friedrich H.: On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations. Commun. Math. Phys. 149(3), 587–612 (1992) · Zbl 0764.53027 · doi:10.1007/BF02096944
[3] Adams, R.A.: Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Newyork-London: Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975 · Zbl 0314.46030
[4] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964) · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[5] Bartnik, R., Isenberg, J.: The constraint equations. In: The Einstein equations and the large scale behavior of gravitational fields. Basel: Birkhäuser, 2004, pp. 1–38 · Zbl 1073.83009
[6] Buchman L.T., Pfeiffer H.P., Bardeen J.M.: Black hole initial data on hyperboloidal slices. Phys. Rev. D80, 084024 (2009)
[7] Carlip S.: Quantum gravity in 2 + 1 dimensions. Cambridge Monographs on Mathematical Physics. Cambridge, Cambridge University Press (1998) · Zbl 0919.53024
[8] Choquet-Bruhat Y.: General relativity and the Einstein equations. Oxford: Oxford Mathematical Monographs, Oxford University Press (2009) · Zbl 1157.83002
[9] Choquet-Bruhat Y., Geroch R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969) · Zbl 0182.59901 · doi:10.1007/BF01645389
[10] Dahl, M., Gicquaud, R., Humbert, E.: A limit equation associated to the solvability of the vacuum Einstein constraint equations using the conformal method, to appear in Duke Math. J., available at http://arxiv.org/abs/1012.2188v2 [gr-qc], 2011 · Zbl 1258.53037
[11] Fourès-Bruhat Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partiel les non linéaires. Acta Math. 88, 141–225 (1952) · Zbl 0049.19201 · doi:10.1007/BF02392131
[12] Friedrich, H., Rendall, A.: The Cauchy problem for the Einstein equations. In: Einstein’s field equations and their physical implications, Lecture Notes in Phys., vol. 540, Berlin: Springer, 2000, pp. 127–223 · Zbl 1006.83003
[13] Gicquaud R.: De l’équation de prescription de courbure scalaire aux équations de contrainte en relativité générale sur une variété asymptotiquement hyperbolique. J. Math. Pures Appl. 94(2), 200–227 (2010) · Zbl 1196.53026
[14] Graham C.R., Lee J.M.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87(2), 186–225 (1991) · Zbl 0765.53034 · doi:10.1016/0001-8708(91)90071-E
[15] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Classics in Mathematics, Berlin: Springer-Verlag, 2001 (Reprint of the 1998 edition) · Zbl 1042.35002
[16] Hawking S.W., Ellis G.F.R.: The large scale structure of space-time. Cambridge Monographs on Mathematical Physics, No. 1. London, Cambridge University Press (1973) · Zbl 0265.53054
[17] Holst M.J., Nagy G., Tsogtgerel G.: Far-from-constant mean curvature solutions of Einstein’s constraint equations with positive Yamabe metrics. Phys. Rev. Lett. 100(16), 161101, 4 (2008) · Zbl 1228.83015 · doi:10.1103/PhysRevLett.100.161101
[18] Holst M., Nagy G., Tsogtgerel G.: Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions. Commun. Math. Phys. 288(2), 547–613 (2009) · Zbl 1175.83010 · doi:10.1007/s00220-009-0743-2
[19] Isenberg J., Park J.: Asymptotically hyperbolic non-constant mean curvature solutions of the Einstein constraint equations. Class. Quant. Grav. 14(1A), A189–A201 (1997) · Zbl 0866.35126 · doi:10.1088/0264-9381/14/1A/016
[20] Lee J.M.: Fredholm operators and Einstein metrics on conformally compact manifolds. Mem. Amer. Math. Soc. 183(864), vi+83 (2006) · Zbl 1112.53002
[21] Lohkamp, J.: Curvature contents of geometric spaces. In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), no. Extra Vol. II, 1998, pp. 381–388 (electronic) · Zbl 0907.53027
[22] Lee J.M., Parker T.H.: The Yamabe problem. Bull. Amer. Math. Soc. (N.S.) 17(1), 37–91 (1987) · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[23] Maxwell D.: Rough solutions of the Einstein constraint equations on compact manifolds. J. Hyperbolic Differ. Equ. 2(2), 521–546 (2005) · Zbl 1076.58021 · doi:10.1142/S021989160500049X
[24] Maxwell D.: Solutions of the Einstein constraint equations with apparent horizon boundaries. Commun. Math. Phys. 253(3), 561–583 (2005) · Zbl 1065.83011 · doi:10.1007/s00220-004-1237-x
[25] Maxwell D.: A class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature. Math. Res. Lett. 16(4), 627–645 (2009) · Zbl 1187.83022 · doi:10.4310/MRL.2009.v16.n4.a6
[26] Sakovich A.: Constant mean curvature solutions of the Einstein-scalar field constraint equations on asymptotically hyperbolic manifolds. Class. Quant. Grav. 27(24), 12 (2010) · Zbl 1208.83023 · doi:10.1088/0264-9381/27/24/245019
[27] Sogge C.D.: Fourier integrals in classical analysis. Cambridge Tracts in Mathematics, Vol. 105. Cambridge, Cambridge University Press (1993) · Zbl 0783.35001
[28] Wald R.M.: General relativity. Chicago, IL, University of Chicago Press (1984) · Zbl 0549.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.